
Emanuel Lacić, M.Sc.

Real-time Recommender Systems in Multi-Domain
Settings

DISSERTATION

for the attainment of the degree of

Doctor of Engineering Sciences (Dr. techn.)

submitted to

Graz University of Technology

Supervisor:
Assoc.-Prof. Dr. Elisabeth Lex

Graz, 25.05.2022

Abstract

Recommender systems have become an essential tool in supporting users to find
relevant content in an overloaded information space. Be it for business, government,
or education, the utilization of recommender systems has become popular across
many application domains. It remains however an open challenge for the research
community to simultaneously deal with multiple domain-specific requirements and
information sources. In addition to that, the advent of the modern Web has posed
the need for handling frequent and diverse data updates with high scalability and
real-time processing, and thus, has brought new challenges that recommender sys-
tems need to deal with. It is therefore the aim of this thesis to investigate how
real-time recommendations can be provided within a multi-domain setting.

For this, four separate research problems are tackled. As the usage of various
information sources is nowadays a popular choice for many application domains,
the first research question investigates the impact of recommendation quality with
respect to combining different sources of data. An empirical study presented in this
thesis shows, for example, that sources like social or location data are especially
beneficial for tackling the cold-start problem. The second research question builds
upon these insights and addresses the problem of customization, scalability, and
real-time performance while supporting heterogeneous information sources across
multiple domains. This yields a methodological contribution of design principles
and aspects that such systems need to support, as well as two recommendation
frameworks that present the underlying architecture suited for a multi-domain set-
ting. The third research question focuses on how to balance the trade-off between
accuracy and runtime performance within a real-time setting. The performed scala-
bility experiments demonstrate how to achieve the desired recommendation accuracy
while guaranteeing the same runtime performance under different load peaks. More-
over, it is shown how to further speed up the generation of recommendations by, for

V

VI

example, adapting the popularly utilized Collaborative Filtering algorithm to find
neighbors in a greedy fashion or utilizing search engine technology with latent item
embeddings. The fourth research question of this thesis tackles the problem of im-
proving real-time recommendations beyond accuracy. This results in an online user
study that shows how offline experiments that focus on improving only accuracy
provide a limited perspective on the true recommendation utility. Besides, this the-
sis presents a methodological contribution in form of a novel approach that utilizes
neural autoencoders to improve the recommendation quality beyond accuracy for
anonymous session users.

Finally, the research performed in this thesis opens up a number of possible re-
search strands for future work on algorithms and systems specifically tailored for
real-time recommendations that are applied in a multi-domain setting. These, for
instance, include tackling different biases, incorporating privacy mechanisms, ap-
proximating online performance as well as providing session-aware real-time recom-
mendations.

Zusammenfassung

Empfehlungssysteme gelten als ein wesentliches Instrument, um Benutzer bei der
Suche nach relevanten Inhalten zu unterstützen. Deren Einsatz hat sich deswe-
gen in vielen Anwendungsbereichen, wie zum Beispiel im Handel, für den Staat
oder im Bildungswesen, durchgesetzt. Eine Problemstellung für die Research Com-
munity ist jedoch, wie man in einer Multistakeholder-Umgebung gleichzeitig die
verschiedenen bereichsspezifischen Anforderungen und Informationsquellen berück-
sichtigen kann. Darüber hinaus hat das modernen Web neue Herausforderungen
für Empfehlungssysteme mit sich gebracht, wie die Notwendigkeit, häufige und
vielfältige Datenupdates hoch skalierbar und in Echtzeit handzuhaben. Das Ziel
dieser Arbeit ist es, zu untersuchen, wie Empfehlungen in einer Multistakeholder-
Umgebung in Echtzeit bereitgestellt werden können.

Es werden vier Forschungsfragen untersucht. Da die Nutzung verschiedener In-
formationsquellen heutzutage in vielen Anwendungsbereichen eine beliebte Wahl ist,
untersucht die erste Forschungsfrage den Einfluss der Empfehlungsqualität in Bezug
auf das Kombinieren von mehreren solchen Datenquellen. In einer empirischen
Studie wird, zum Beispiel, festgestellt, dass Quellen, die soziale oder ortsbezogene
Daten beinhalten, besonders vorteilhaft für die Bewältigung des Cold-Start Problems
sind. Die zweite Forschungsfrage baut auf diesen Erkenntnissen auf und befasst sich
mit dem Problem der anwendungsorientierten Unterstützung heterogener Informa-
tionsquellen. Der Fokus hier liegt insbesondere in der Anpassung, Skalierbarkeit und
Echtzeitleistung innerhalb einer Multistakeholder-Umgebung. Daraus ergibt sich ein
methodischer Beitrag zu den Prinzipien und Aspekten, die bei der Gestaltung solcher
Systeme unterstützt werden müssen, sowie zwei Frameworks für Empfehlungssys-
teme, die die zugrunde liegende Architektur für eine Multistakeholder-Umgebung
darstellen. Die dritte Forschungsfrage untersucht, wie der trade-off zwischen algo-
rithmischer Genauigkeit und der Laufzeitleistung in einer Echtzeitumgebung aus-

VIII

IX

geglichen werden kann. Die durchgeführten Experimente bezüglich Skalierbarkeit
zeigen, wie man die gewünschte Empfehlungsgenauigkeit erreichen kann, während
eine unveränderte Laufzeitleistung unter verschiedenen load peaks garantiert wird.
Weiters wird gezeigt, wie man die Generierung von Empfehlungen weiter beschle-
unigen kann, indem man zum Beispiel den häufig genutzten Collaborative Filter-
ing Algorithmus anpasst, um Nachbarn in einer greedy Art und Weise zu finden,
oder indem man Suchmaschinentechnologie mit latenten Vektoren nutzt. Die vierte
Forschungsfrage dieser Arbeit befasst sich mit dem Problem der Verbesserung von
Echtzeitempfehlungen, die über typischerweise verwendete Genauigkeitsmaße hin-
aus geht. Das Ergebnis ist eine Onlinestudie, die zeigt, dass Offline-Experimente,
die sich nur auf die Verbesserung der Genauigkeit konzentrieren, eine limitierte Per-
spektive auf die echte Effektivität von Empfehlungssystemen bietet. Weiters wird
ein methodischer Beitrag präsentiert, der einen neuartigen Ansatz zur Nutzung
von neuronalen Autoencodern vorstellt, um die Empfehlungsqualität für anonyme
Session-Benutzer zu verbessern.

Abschließend eröffnet die in dieser Arbeit durchgeführte Forschung eine Reihe
möglicher Forschungsrichtungen für zukünftige Arbeiten, die sich an Algorithmen
und Systeme fokussieren, die speziell auf Echtzeit-Empfehlungen zugeschnitten sind
und in einer Multistakeholder-Umgebung eingesetzt werden. Dazu gehören zum
Beispiel der Umgang mit verschiedenen Daten Biases, die Einbeziehung von Mech-
anismen zum Schutz privater Daten, Online-Performance vorab zu schätzen, sowie
die Bereitstellung von Echtzeit-Empfehlungen anhand mehrerer Sessions, die für
bekannte Benutzer verfügbar sind.

Acknowledgements

This dissertation would not be possible without a number of people who provided
me their support and advice throughout the whole realization process of this thesis.

First and foremost, I would like to thank my supervisor, the head of the Social Com-
puting research group at the Institute of Interactive Systems and Data Science and
dean of study for Computational Social Systems at Graz University of Technology
- Assoc.-Prof. Dr. Elisabeth Lex. Thank you for constantly pushing me to do my
best and giving me all the critical feedback, regardless of how hard it was for me to
sometimes hear it. And thank you for just being there, not only to help me with my
research but also for always going well beyond. I want you to know that without
your tremendous support, all of this would not have been possible.

To Prof. Dr. Stefanie Lindstaedt, head of Institute for Interactive Systems and Data
Science and CEO & Scientific Director of Know-Center - thank you for making it
possible to work on my research and provide me with so many opportunities to apply
it directly in an industry setting at the Know-Center. Prof. Dr. Christoph Trattner,
my advisor during the first two years of this thesis, thank you for introducing me
to the world of Recommender Systems and teaching me how to write papers and
conduct scientific experiments.

To all my current and former colleagues, thank you for all the discussions and
valuable feedback that helped me finish my thesis. Franjo Bratić and the whole IT
department — instead of a thank you, I would rather say sorry for all the headaches I
may have caused you. A special thanks goes to Dr. Dominik Kowald, Dr. Sebastian
Dennerlein and Dieter Theiler which accompanied me on my journey since day 1.
Guys, if nothing else, never forget Barcelona. Also, one more shoutout to Markus

XI

XII

Reiter-Haas, it was a pleasure doing research with you and helping you finish your
Master’s degree.

One huge thank you goes to my Zagreb crew at the Know-Center: Mario “Kum”
Lovrić, Leon “Kumić” Fadljević and Tomislav “Požuri” Ðuričić. All those car rides
between Zagreb and Graz flew just by with you. From all people, however, I have
to mention and give my thanks to Tomislav Ðuričić twice. Not because you pushed
me to learn how to play basketball without fouling (at least you tried). But because
you, out of all people here, supported me the most — especially in times I really
needed it. This now brings me to Borivoj Radmanović, Antonella Karajica and
Admir Brkić — thank you for being the kind of friends I didn’t want to have, but
the ones I deserved. Joking, of course, you’re awesome!

Last but not least, a special thanks to my whole family. Now you can finally stop
asking me when I’m going to finish my PhD. Seriously though, to my grandparents,
all my aunts and uncles as well as all my cousins, thank you for being there for
me. Iris and Hrvoje Pindrić, I appreciated the public nagging and pushing me to
get it over with — it actually did help. A special thanks goes to my dear brother
Mario Lacić, my dearest sister Lucija (still) Lacić as well as soon-to-be brother-in-
law Gabrijel Tutić. Your unwavering belief in me was a constant moral support.
Finally, I would not only love, but I owe it deeply to thank my parents, Dubravka
and Miroslav Lacić. Thank you for raising me and teaching me the right values of
life. Thank you for your unconditional love and constant support. Thank you for
making all of this possible and not even blinking an eye whenever I came and asked
you for help. I dedicate this thesis to you. Without you believing in me, it would
have not been possible otherwise.

"You can have data without information, but you cannot have
information without data." (Daniel Keys Moran)

XIV

Contents

1 Introduction 6
1.1 Structure of this thesis . 7
1.2 Research Questions . 8
1.3 Scientific Contributions . 20

2 Related Work 22
2.1 Recommender Algorithms . 22
2.2 Neural Recommenders . 23
2.3 Information Sources . 24
2.4 Scalable Recommender Systems . 25
2.5 Real-time Recommendations . 26
2.6 Evaluating Recommendations . 26

3 Publications 28
3.1 Main Publications . 28
3.2 Additional Publications . 34

4 Conclusions and Outlook 122
4.1 Results and Contribution . 122
4.2 Limitations . 125
4.3 Topics for Future Research . 127

2

List of Figures

1.1 Research questions . 9
1.2 Traditional recommender network . 10
1.3 Heterogeneous recommender network 11
1.4 Notions of a domain . 13
1.5 Multi-domain design aspects . 14
1.6 System architecture of ScaR . 16

3

List of Tables

3.1 Overview of the 6 main publications as well as the 12 additional
publications made for answering all four research questions of this
thesis. 29

4

Chapter 1

Introduction

With the advent of the Web, the majority of our activities like shopping, socializing
or working are being performed online [Lewis, 2021]. During the past decade, the
amount, complexity and heterogeneity of information available on the Internet has
downright skyrocketed and presents a huge hurdle for the human processing capa-
bilities. For example, the e-commerce website Amazon.com provides hundreds of
millions of products [Smith and Linden, 2017] of which an average user is highly
unlikely to be able to process them all. This naturally also holds for applications in
other domains like Airbnb, YouTube, Spotify, or Netflix. It has become abundantly
clear, particularly since the hype of the social Web and platforms such as Twitter,
Facebook, and Reddit, that we now live in an age of information overload [Matthes
et al., 2020, Lewis, 2021].

This led to a tremendous increase in popularity of utilizing recommender systems
where nowadays, they are acknowledged as an essential feature to help users discover
relevant content [McNee et al., 2006]. At Neflix for example, up to 75% of what users
watch are recommendations1 and this is estimated to save the company more than $1
billion per year [Gomez-Uribe and Hunt, 2015a]. As a consequence, current research
focuses on improving the prediction task in order to deliver recommendations that
are more likely to align with people’s preferences. Thus, many well known methods
are available, such as the ones that use the textual content of recommendable items
[Balabanović and Shoham, 1997] or the historical preference of a user in form of
interactions with the online system [Sarwar et al., 2001, Koren et al., 2009].

1http://www.mckinsey.com/industries/retail/our-insights/
how-retailers-can-keep-up-with-consumers

6

http://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
http://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers

1.1. STRUCTURE OF THIS THESIS 7

Most of the earlier work on recommender systems has focused on adapting ex-
isting algorithms for a specific application domain like movies at Netflix, music at
Spotify or products at Amazon. But in recent years, integrating data across differ-
ent domains [Im and Hars, 2007, Cantador et al., 2015] or markets [Roitero et al.,
2020, Bonab et al., 2021] is starting to gain more momentum in the research com-
munity. A common approach in such settings is to simplify the prediction task and
view it as a problem with only two dimension. That is, given a user profile and a
target item, the task at hand is to predict if there exists a link between them and
if yes, to see if that particular item should be recommended. The current challenge
here lies in fully utilizing data from auxiliary sources. This especially holds when
the aim is to support and provide recommendations to multiple domains at the same
time.

With the arrival of the Big Data era, recommender systems must now deal with
the dynamic nature of the Web, requiring them to analyze large amounts of data,
handle streams of new data, and support a range of data formats (i.e., volume, veloc-
ity, and variety which define the Big Data problem [Russom et al., 2011]). In these
situations, traditional recommender systems typically examine the data offline and
update the underlying model at regular intervals. However, a user’s choice depends
on many factors, which are susceptible to change anytime. For example, users who
physically visit a shopping mall can trigger frequent indoor location updates via a
smartphone application while moving through the mall [Lacic et al., 2015b]. An
offline model update approach that, for example, lasts hours may miss the user’s re-
cent location context and fail to give the appropriate recommendations to meet the
user’s real-time need. As such, being able to consider a user’s real-time interests is
gaining traction and is not only in high demand within the research community but
also with recommender systems’ practitioners [Huang et al., 2015, Jannach et al.,
2017, Al-Ghossein et al., 2021, Kersbergen and Schelter, 2021]. [Lacic, 2016]

Thus, the aim of this thesis is to show how real-time recommendations can be
provided within a multi-domain setting.

1.1 Structure of this thesis

This thesis is structured as follows: the current chapter continues with Section 1.2,
which defines the four research questions, the overall problem, approach, and findings

1.2. RESEARCH QUESTIONS 8

related to each of the questions. The accompanied Section 1.3 then summarizes
the scientific contributions of this dissertation’s research. Chapter 2 presents an
overview of the state-of-the-art that is related to this dissertation. Chapter 3 lists
the publications related to this thesis and presents their corresponding contributions.
This chapter is split in two parts, the main contributions that are also included in
this thesis and additional publications, which are further strengthening the outcome
of this thesis but are only referenced. Finally, Chapter 4 concludes this thesis and
points to relevant research directions for future work.

1.2 Research Questions

This section describes the four research questions that are investigated in this the-
sis. As visualized in Figure 1.1, this thesis first investigates how combining data
sources impacts the recommendation quality (RQ1). Second, the problem of tai-
loring recommendations for a multi-domain environment is tackled (RQ2). Third,
the real-time performance of recommender algorithms is analyzed when applied in
a multi-domain environment (RQ3). Finally, this thesis studies improvements on
the quality of recommendations which go beyond the notion of standard accuracy
measures (RQ4). Summing up, in this thesis, the following research questions are
tackled:

RQ1: How does combining different data sources and recommender ap-
proaches impact the robustness of recommendations?

Problem. Personalized recommender systems commonly calculate their recommen-
dations using only one information source, namely interaction data. This can be, in
case of an e-commerce system for example, implicit user feedback like already clicked
or purchased products [Guo et al., 2011, Zhang and Pennacchiotti, 2013, Trattner
et al., 2014]. As depicted in Figure 1.2, solving the recommendation problem in
such a traditional setting would mean to predict connections in a bipartite graph.
Although there are many examples that perform reasonably good when handling
the prediction task in such way, nowadays, many platforms have the opportunity to
collect additional information about their users. As seen in Figure 1.3, where an ex-
ample of a social marketplace is depicted, this can come directly from different data

1.2. RESEARCH QUESTIONS 9

Research Questions

RQ 1

How does combining different data sources and
recommender approaches impact the robust-
ness of recommendations?

RQ 2

How can we address customization, scalability
and real-time performance across multiple rec-
ommender systems domains?

RQ 3

How can we balance the trade-off between ac-
curacy and runtime in real-time recommender
systems?

RQ 4

How can we improve real-time recommendations
beyond accuracy?

Figure 1.1: The four research questions addressed in this thesis.

1.2. RESEARCH QUESTIONS 10

u1 u2 u3

p1 p2 p3 p4

Figure 1.2: Traditional recommender systems consider only a bipartite network
which represents user interactions. For instance, a user (green) in an e-commerce
online system would buy products (red) and this data would be used to recommend
additional products to purchase.

sources like social and location-based data (e.g., by supporting a social login mech-
anism [Kontaxis et al., 2012]) or be inferred from the existing data (e.g., creating a
location network out of check-in data). Even though previous research has shown
that additional information can be useful in the wide field of recommender systems
(e.g., [Feng and Wang, 2012, Liu et al., 2017b, Berndsen et al., 2020, Patro et al.,
2020]), it remains an open problem to understand the impact on the robustness of
recommendations when combining different information sources.

Approach. The first research question of this thesis aims to understand how dif-
ferent information sources can help in learning a user’s preference and consequently
create more robust recommendations. To that end, in [Lacic et al., 2015a] we studied
the efficacy of utilizing social, location and marketplace data features to recommend
products and categories to users in an online social marketplace. In addition to that,
we investigated on how to efficiently combine data sources in order to further in-
crease the recommendation quality. This study was extended in [Lacic et al., 2014c]
and [Lacic et al., 2015b], where we looked at the impact of additional data sources
for users that are new to the system. In [Duricic et al., 2018] we explored how ex-
plicit trust connections between users can be leveraged to provide recommendations
when no other data is available about a user. In [Lacic et al., 2014b], we studied
social tags and how to use them by considering their temporal patterns. Finally, in
[Reiter-Haas et al., 2017] we showed how domains which do not rely on additional
data sources can be enriched with data that can serve as an information source for
the recommender.

1.2. RESEARCH QUESTIONS 11

g1 g2

g3

l1 l2

l3

u1

u2

u3

i1

i2 i3

p1 p2

p3 p4

c1 c2 c3

Figure 1.3: Heterogeneous network representing an online social marketplace that
contains information commonly found in popular online systems like Facebook or
Amazon. A common action for users is to purchase or sell a product pi (red) that
belong to a specific category ci (orange). Users also frequently belong to a social
group gi (yellow) or have a specific interest ii (purple) denoted in their profile.
Mostly however, a user ui (green) interacts with other users via social interactions
such as likes or comments. In addition to that, users may notify their community
via a check-in when they arrive at a specific location of their interest li (blue).

1.2. RESEARCH QUESTIONS 12

Findings and Contributions. We first introduced content and network-based
similarity features that can be applied for different data sources. By focusing on the
popular non-probabilistic user-based Collaborative Filtering [Schafer et al., 2007]
algorithm, we further showed how the use of such features in the recommendation
process helps to improve the recommendation performance. Here, for example, uti-
lizing the network structure derived from social interactions (e.g., likes) was shown
to be particularly beneficial in improving the recommendation quality. Further-
more, our experiments proved our initial assumption that combining user similarity
features of the different data sources in a hybrid manner can lead to more robust rec-
ommendations with respect to accuracy, diversity, and user coverage. [Lacic et al.,
2015a]

We also demonstrated how the recommendation quality could improve if an addi-
tional data source is provided (e.g., [Reiter-Haas et al., 2017, Duricic et al., 2018]).
In case of social data, we showed that the overall quality greatly depends on the
number of social profiles available in the system. We also extended this with a cold-
start simulation of a new system (e.g., a similar case like it was with the beginning
of Spotify) in which we assumed that all new users provide social data. In this case,
the delivered prediction quality can already be significantly increased in the early
stages of the new system. [Lacic et al., 2014c]

This was further confirmed in a similar experiment where we tackled extreme cold-
start users, but with location data. We showed that when location data is available
(e.g., generated from indoor positioning systems in shopping malls), we can greatly
improve the first recommendation to completely new users in the system by either
using the raw location traces or inferring a location network out of them. [Lacic
et al., 2015b]

Finally, we also considered social tagging systems, which are another popular data
source. We contributed with a novel algorithm called Collaborative Item Ranking
Using Tag and Time Information (CIRTT) and showed how the recommendation
performance can be improved by ranking candidate item sets using the information
of frequency and recency of tag use. [Lacic et al., 2014b]

1.2. RESEARCH QUESTIONS 13

ITEM LEVEL SYSTEM LEVELATTRIBUTE LEVEL TYPE LEVEL

MOVIES

Comedy

MOVIES

Thriller
MOVIES BOOKS NETFLIX AMAZONMOVIES TV SERIES

Figure 1.4: Notions of a domain according to [Cantador et al., 2015]. The attribute
level contains the same type of items (e.g., movies) but has different values on
certain attributes (e.g., genre of the movie). The type level notion has similar types
of items (e.g., movies and TV series) which share some of their attributes. Individual
domains on the item level have different types of items (e.g., movies and books).
On a system level, items (e.g., movies or books) belong to distinct systems, which
are considered as different domains (e.g., Netflix and Amazon). [Cantador et al.,
2015, Lacic et al., 2017]

RQ2: How can we address customization, scalability and real-time per-
formance across multiple recommender systems domains?

Problem. Most of the literature about recommender systems focuses on developing
novel approaches that improve the accuracy for items that belong to a single domain
(e.g., movies, music, news, etc.). But focusing on multiple domains (e.g., [Roitero
et al., 2020, Bonab et al., 2021]) is gaining more traction in the research community.
The work of [Cantador et al., 2015] was the first attempt to define the concept of a
domain in the setting of recommender systems. As seen in Figure 1.4, the authors
distinguish between four different domain notations. First, there is the attribute
level, where items are of the same type (e.g., movie genres). Second, the type level,
where items are of similar types but do not necessarily share all attributes (e.g.,
movies and TV series). At the item level, items are not of the same type and differ
in most or all attributes (e.g., movies and books). Finally, at the system level, items
and users belong to completely different systems (e.g., Netflix and Amazon). [Lacic
et al., 2017]

Most work that adopt this notion focus solely on utilizing the data between
domains in order to improve the recommendation performance [Gao et al., 2013, Loni
et al., 2014, Sahebi and Walker, 2014, Elkahky et al., 2015, Sahebi and Brusilovsky,
2015, Bonab et al., 2021]. There is however still a lack of work on how to actually
simultaneously support recommendations in a multi-domain environment.

1.2. RESEARCH QUESTIONS 14

RECOMMENDER

CUSTOMIZATION

SERVICE

ISOLATION

DATA

HETEROGENEITY

FAULT

TOLERANCE

MULTI-DOMAIN RECOMMENDER SYSTEM

Figure 1.5: Building a recommender system for a multi-domain environment needs
to address the aspect of (i) providing service isolation, (ii) supporting data hetero-
geneity, (iii) allowing recommender customization, and (iv) ensuring fault tolerance.

Approach. The aim of the second research question is to build upon the work
of [Cantador et al., 2015] and extend the scope of multi-domain recommender sys-
tems. In [Lacic et al., 2017] we have categorized and introduced different design
aspects that should be addressed when providing recommendations. To show the
applicability of these design aspects, we first presented a framework for providing
real-time recommendations for online marketplaces [Lacic et al., 2014c] and then
extended it to account for scalability and a multi-domain environment [Lacic et al.,
2015c]. Finally, in [Traub et al., 2015, Lacic et al., 2016, Kowald et al., 2018, Lacic
et al., 2018a, Lacic et al., 2018b] we showed how such an approach can be utilized
to customize a recommender system across multiple domains.

Findings and Contributions. As depicted in Figure 1.5, we categorized a multi-
domain recommender system into four different aspects. First, sharing hardware
resources while ensuring performance isolation and fault tolerance is required to
support different requirements in terms of recommendation request load2. Such
functionality helps, for instance, in handling unanticipated load peaks a domain may
occasionally encounter. Second, a multi-domain recommender system inherently
needs to be able to handle a diverse set of data sources and simultaneously support
an easy integration of new data types (e.g., by altering the underlying schema). Such
a need can be depicted by Listing 1.1, where two domains have a requirement of
storing user-item interactions. But as differentiated in [Adomavicius and Tuzhilin,

2The number of simultaneous recommendation requests that the system needs to process in a
timely manner.

1.2. RESEARCH QUESTIONS 15

{
"item": "5a35c4d3−a5dc−36d4−6a8b−f543da297a7c",
"users_listened": [5506, 68107, 1000002]
"users_listened_count": 3
"domain": "LastFM"

},
{

"user": "56861",
"item": 3473,
"rating": 2.0
"domain": "MovieLens"

}

Listing 1.1: Example of different user-item interactions that need to be stored and
utilized by recommender algorithms in an multi-domain envorinment. The recom-
mender system in this case needs to support the implicit listening interactions from
the music domain (i.e., LastFM), as well as explicit movie ratings found in the movie
domain (i.e., MovieLens).

2008], a recommender algorithm employed by one domain may consider different
types of user interactions than the one used in the other domain. That is, the
underlying system would need to support every kind of interaction (e.g., implicit,
explicit or inferred ones) that could form such a two-dimensional view. Finally, a
multi-domain recommender system should support the customization of domain-
specific parameters related to the employed algorithm and unambiguously know
which source of information should be used to calculate the recommendations. [Lacic
et al., 2017]

To show that these design principles can be applied in real systems, we first con-
tributed with SocRecM, a Java-based recommender framework that is aimed to
build a scalable social recommender engine for online marketplaces. With SocRecM
we showed how search engine technology can be leveraged to build a recommender
system that supports large quantities of diverse data structures. [Lacic et al., 2014c]

We then improved on the runtime performance in a multi-domain setting and con-
tributed with ScaR (i.e., Scalable Recommendations-as-a-service), an extension that
is aimed for a multi-domain setting. To show its applicability as depicted in Fig-
ure 1.6, we customized and presented ScaR for the domains of Tourism, Music,
Movies, Venues, Social Care, E-Commerce, Technology Enhanced Learning and Job

1.2. RESEARCH QUESTIONS 16

Matchmaking. Furthermore, we found that the domain-specific customization of
a recommender algorithm is of particular importance, as it also fosters the repro-
ducibility [Ekstrand et al., 2011] of experimental evaluations conducted within an
application domain. [Lacic et al., 2015c]

Service Provider Service Provider

Domain Z
(Item Level)

Domain Y
(Item Level)

Domain X
(System Level)

Recommender Customizer

Data Modification Layer

ZooKeeper

INIT A/B
TESTING

Recommender Engine

Data Modification LayerData Modification Layer

Service Provider

Recommender Engine Recommender EngineRecommender Engine

Data Modification Layer

INIT A/B
TESTING Recommender EvaluatorRecommender Evaluator

INIT A/B
TESTINGRecommender Evaluator

SYSTEM
ADMINISTRATOR

SYSTEM
ADMINISTRATOR

SYSTEM
ADMINISTRATORUSERS USERS USERS

Text

Figure 1.6: Proposed architecture for a multi-domain recommender system. Each
component is a microservice (i.e., a standalone HTTP server) that is aware of its
communicating partners’ location (i.e., the URL). If a multi-domain scenario at
the system level is not required, the same form of data storage can be used between
individual domains. The corresponding customization through recommender profiles
provides the domain-specific algorithm configuration. [Lacic et al., 2017]

RQ3: How can we balance the trade-off between accuracy and runtime
in real-time recommender systems?

Problem. In the past decade, most research on recommender systems has focused
on producing novel recommendation algorithms [Shani and Gunawardana, 2011] and
improving the prediction accuracy [Rana and Jain, 2015]. Traditional recommender
systems typically analyze data offline and generate an algorithmic model at regular
time intervals in order to be used in a dynamic environment such as the Web.
However, a user’s choice depends on a variety of factors that are subject to change
at any time. One example would be the news domain, where a majority of the
user base are short-lived session users that interact with only few news articles. An

1.2. RESEARCH QUESTIONS 17

offline model training strategy which is updated after several hours or even days may
miss the current context of the user’s real-time demand. Hence, the interest of the
research community has shifted into balancing the open problem of showing accurate
recommendations while being able to capture and consider a user’s real-time interest
[Chandramouli et al., 2011, Huang et al., 2015, Rana and Jain, 2015].

Approach. The focus of the third research question is to investigate the impact
on the accuracy while providing recommendations in real-time. This led us to first
investigate if and how search engine technology can be adapted in order that recom-
mender algorithms exhibit a real-time performance [Lacic et al., 2014a]. In [Lacic
et al., 2015c, Lacic, 2016, Lacic, 2017], we further looked at how an increasing recom-
mendation request load can impact the runtime performance of a given algorithm.
In this study, we additionally explored how scaling the system can help to reduce
the runtime of particular algorithms and the general response time of the overall
recommendation system. In [Lacic et al., 2018a] we investigated how to speed up
the nearest neighbor approach as it is one of the most explored and utilized tech-
niques for personalized systems. Finally, in [Lacic et al., 2019b], we conducted a
user study within the job domain to uncover the applicability of user embeddings in
a real online setting while maintaining a mean runtime performance that is below
200 ms.

Findings and Contributions. We first demonstrated that by leveraging search
engine technology (e.g., Apache Solr), we can generate recommendations under real-
time constraints as well as handle data streams and frequent updates [Lacic et al.,
2014a]. We further showed that under an exponentially growing workload (i.e., a
load peak that is triggered by an increasing number of incoming recommendation
requests), the recommendation system will continue to increase the average runtime
performance of individual algorithms even though there is a maximal theoretical
limit of recommendation requests that can be handled by the underlying hardware
and software configuration. By scaling the system in a horizontal manner, it is how-
ever possible to increase this theoretical limit and therefore minimize the impact
on the runtime performance of individual algorithms. By making such scalability
experiments, it is possible to find out which algorithms should be used or combined
(e.g., in case of hybrid approaches) in order to guarantee a real-time runtime per-

1.2. RESEARCH QUESTIONS 18

formance while maintaining the desired recommendation accuracy. [Lacic et al.,
2015c, Lacic, 2016, Lacic, 2017]

To further improve the balance between accuracy and runtime we explored the
Collaborative Filtering algorithm [Resnick et al., 1994, Sarwar et al., 2001] which
is one of the most explored and utilized approaches for providing personalization.
For this, we integrated a user pre-filtering step to build a smaller set of candidate
neighbors in a greedy manner. That is, we focused on neighboring users which have
a higher amount of overlapping items. Our experiments showed that in this way, it
is possible to greatly speed up the runtime performance and in some cases not even
sacrifice the overall accuracy. [Lacic et al., 2018a]

Finally, we also considered the utilization of latent item embeddings, as these have
recently become one of the most popular methods to use in the recommender sys-
tem’s research community. For this, we conducted an online user study in the job
domain for the scenarios of recommending similar jobs and personalizing the home-
page. We showed how to utilize embeddings in order to improve Click-Through-Rate
of the recommender while having a below 200 ms average runtime performance.
Moreover, we showed that the recommendation scenario (i.e., context where the
user sees the recommendations) in fact impacts the final online performance of a
utilized recommendation algorithm. For instance, when recommending similar jobs,
users expect to see something that is relevant to their recent interaction history.
When compared to classical approaches, utilizing embeddings that focus on recent
interactions led to both, an improved Click-Through-Rate and runtime performance.
[Lacic et al., 2019b]

RQ4: How can we improve real-time recommendations beyond accu-
racy?

Problem. The focus of research on recommender systems has been in many cases
only on assessing and improving the prediction accuracy [Jäschke et al., 2007, Shi
et al., 2010, Liang et al., 2018]. But optimizing only on accuracy and not the
human need for variety and discovery may easily lead to a lesser user experience, as
this easily results in “boring and ineffective recommendations” [Zhang et al., 2012].
The research community has therefore acknowledged that in an online, real-time
setting, factors other than accuracy may have a significant effect on the performance

1.2. RESEARCH QUESTIONS 19

of a recommender system [McNee et al., 2006]. To assess the true utility of a
recommender algorithm, one would usually need to conduct a user study or set up
an online A/B testing experiment. The former approach requires the involvement
of active participants within a pre-defined time frame [Beel et al., 2013]. The latter
requires access to a fully functional system with existing users. Moreover, to conduct
A/B tests one would need to deal with other real-time constraints [Eksombatchai
et al., 2018], like having a response time of recommendation requests which do not
exceed a certain amount of milliseconds. As such, there is a growing trend to go
beyond accuracy. This essentially means to investigate offline metrics that provide
more in-depth insights into the quality and final utility of a recommender approach
(e.g., [Ge et al., 2010, Belém et al., 2013]).

Approach. For the fourth research question, we first explored how the recently
popularized utilization of item embeddings compares to standard recommendation
algorithms on measures which go beyond recommendation accuracy [Lacic et al.,
2018b]. For this, we looked at different strategies on how to combine embeddings in
order to balance the trade-off between accuracy, diversity and novelty. We continued
with this using an online study under real-time constraints in [Lacic et al., 2019b]
and investigated the impact of the display context (i.e., where the utilized approach
was in the end shown). In [Lacic et al., 2019a] we further investigated how mea-
suring the semantic similarity between the list of recommended and expected items
can help to better understand if a “hit” (i.e., a relevant item) has been generated.
Finally, in [Lacic et al., 2020] we focused on a special case in the domain of real-time
recommender systems, namely, recommending for anonymous session users. As re-
search on session-based recommenders with respect to beyond accuracy measures
is rather scarce, we investigated the performance of state-of-the-art session-based
approaches as well as proposed how to extract and utilize latent embeddings of a
particular session.

Findings and Contributions. We first explored how item embeddings impact
recommendation accuracy in addition to diversity and novelty. For this, we investi-
gated different strategies on how to combine embeddings that are derived from the
user’s history. We showed that the trade-off between accuracy and diversity can be
balanced by using human memory theory and proposed an approach that models

1.3. SCIENTIFIC CONTRIBUTIONS 20

the frequency and recency of user’s past interactions. [Lacic et al., 2018b]

Using these insights, we further conducted a variety of A/B experiments and con-
tributed to the sparse line of research on evaluating the impact of latent embeddings
under real-time constraints. Here we focused on two popular recommendation sce-
narios: (i) to provide recommendations when a user is currently at the details page
of a particular item and (ii) to personalize the items which are shown on the home-
page. In the first scenario, we found that using embeddings that are based on more
recent interactions tends to improve the online performance. In contrast, for the
scenario of personalizing the homepage, we found that the combination of embed-
dings which is based on the frequency and recency of past user interactions exhibits
the best online performance. [Lacic et al., 2019b]

We then focused on showing how measuring only accuracy may not be enough
when evaluating the quality of recommender algorithms. We contributed with an
alternative measure that measures the semantic relationship of recommended items
and showed that even if the expected item was not found, the underlying algorithm
may still have recommended an item that is relevant to the user. [Lacic et al., 2019a]

Finally, we addressed the problem of anonymous user sessions and evaluated state-of-
the-art approaches with respect to beyond-accuracy metrics (i.e., novelty, serendip-
ity, and coverage). Here, we additionally contributed with a novel approach that
utilizes autoencoders in order to extract latent embeddings of a particular session.
When compared to state-of-the-art baselines, we discovered that when we learn
session embeddings based on interaction and content data and use them in a k-
nearest neighbor manner, we can achieve the best results with respect to the beyond-
accuracy measures, as well as competitive results in terms of accuracy. [Lacic et al.,
2020]

1.3 Scientific Contributions

This section outlines the scientific contributions of this dissertation’s research. With
respect to the research questions of this thesis, the five main contributions are as
follows:

1. It is shown that utilizing additional information sources can lead to more

1.3. SCIENTIFIC CONTRIBUTIONS 21

robust recommenders with respect to accuracy, diversity, and user coverage
(Research Question 1). Specifically, by combining several recommender ap-
proaches that rely on heterogeneous data sources, it is possible to increase the
recommendation accuracy. Also, the use of additional data helps mitigate the
cold-start problem, i.e., when a new user comes to the system.

2. As the amount and heterogeneity of available data sources heavily differ be-
tween application domains, a scalable and customizable architecture is pro-
posed. Such an architecture is shown to be easily adapted for different rec-
ommendation scenarios and to be suited for providing recommendations in
an environment where multiple domains need to supported at the same time
(Research Question 2).

3. It is demonstrated how recommendations in a multi-domain setting can be
provided in real-time (Research Question 3). Furthermore, it is shown that
the trade-off between recommendation accuracy and runtime needs to be taken
into account when considering to apply a specific recommendation strategy.

4. By applying novel methods based on neural autoencoders, it is shown that
real-time recommendation approaches can be improved beyond the most com-
monly measured recommendation accuracy (Research Question 4). It is further
shown that this can also be applied to a special scenario of recommending for
anonymized user-sessions in real-time, where the recommendation problem is
even harder because the available data is much sparser than when the user is
known to the system.

5. Finally, two open-source Java-based frameworks are presented. With SocRecM,
this thesis first shows how real-time recommendations can be provided by uti-
lizing heterogeneous data sources in the e-commerce domain. With ScaR, this
thesis improves on the real-time performance achieved with SocRecM with
respect to an increasing number of incoming recommendation requests and
extends the framework with the proposed notations of a multi-domain recom-
mender system.

These contributions are presented in the 18 publications, which are listed in more
detail in the following Chapter 3.

Chapter 2

Related Work

This chapter presents the state-of-the-art research related to the four research ques-
tions presented in the previous Chapter 1 of this thesis. This is done by first pre-
senting an overview over algorithms that are usually utilized for solving the recom-
mendation problem. Following that is a discussion on recent trends with respect
to neural recommendation approaches. The inclusion of auxiliary data is addressed
afterwards, as user-item interactions are not the only source of information that
can be used to generate recommendations. With respect to running a recommender
system in an online setting, work that is related to topics of scalability and real-
time performance are then presented. Finally, this chapter ends with an overview
of recent trends and ongoing problems the research community has in regard to
evaluating recommender systems.

2.1 Recommender Algorithms

Recommender systems typically learn a model to predict the preference for each
user-item pair. Most commonly, this is done in a nearest-neighbor fashion (i.e.,
user-based [Resnick et al., 1994] or item-based [Sarwar et al., 2001]) or by finding
similar items in a content-based manner [Balabanović and Shoham, 1997]. In this
respect, personalized recommendations using Matrix Factorization [Koren et al.,
2009, Ma et al., 2011] dominate the literature. The most popular use case here
was to formulate the problem as a rating prediction task, where the model would
attempt to minimize the difference between the predicted and the original rating

22

2.2. NEURAL RECOMMENDERS 23

value. One popular approach in this setting is, for example, Probabilistic Matrix
Factorization (PMF) by Mnih and Salakhutdinov [Mnih and Salakhutdinov, 2008].

The research community has, however, recognized that rating prediction does not
adequately depict a real-world recommendation scenario [Steck, 2013]. Thus, the
problem is rather formulated as a ranking task where, out of all possible items, only
a small number should be picked. In this scenario, approaches like Weighted Matrix
Factorization (WMF) [Hu et al., 2008], Bayesian Personalized Ranking (BPR) [Ren-
dle et al., 2009] or Sparse Linear Methods (SLIM) [Ning and Karypis, 2011], which
are based on implicit feedback (e.g., a binary signal in the form of 1 or 0 if a user
has clicked an item) are a popular choice. One caveat when adapting Matrix Fac-
torization for a real-world scenario however, is that they need to be retrained when
the data changes. Namely, this can happen to be a time-consuming task, especially
in case of frequent data updates. Furthermore, empirical studies showed that the
computational cost should not be neglected, as a large number of latent factors are
needed so that Matrix Factorization can deal with sparse data. [Salakhutdinov and
Mnih, 2008]

2.2 Neural Recommenders

Research on algorithmic advances in the recommender systems’ community has
changed in the last few years where the trend has moved more towards utilizing
deep learning techniques [Dacrema et al., 2019]. The focus of earlier work was on
explicit feedback and solving the rating prediction problem with neural networks.
For that, Restricted Boltzmann Machines were a popular choice to serve as a basis
for Collaborative Filtering [Georgiev and Nakov, 2013, Zheng et al., 2016]. With
respect to formulating the problem as a ranking task, two early methods are Collab-
orative Denoising Autoencoder (CDAE) [Wu et al., 2016] and Collaborative Deep
Learning (CDL) [Wang et al., 2015]. Both use denoising autoencoders where the for-
mer learns a latent user representation by leveraging only the user history while the
latter jointly represents the collaborative data with content information. Another
related approach is Neural Collaborative Filtering (NCF) [He et al., 2017] where the
authors explore applying non-linear interactions between the latent factors of a user
and item instead of using the dot product. One problem that such methods suffer

2.3. INFORMATION SOURCES 24

from is that the amount of model parameters grows linearly with the number of
users and items. As this can make the model much more prone to overfitting, Liang
et al. [Liang et al., 2018] proposed to use the generative variational autoencoder
with multinomial likelihood for collaborative filtering (Multi-VAE). Other recent
work like the one from Hidasi et al. [Hidasi et al., 2015, Hidasi and Karatzoglou,
2018] propose a recurrent neural network (RNN) based approach to model variable-
length sequential data. They showed that RNNs (e.g., Gated Recurrent Units) can
be adapted for this task. Others build on this idea and extend it by capturing
additional information like context [Twardowski, 2016] or attention [Li et al., 2017].

In summary, recent advances in neural recommenders have been heavily influenced
and inspired by natural language processing (NLP) research over the last 8 years
[de Souza Pereira Moreira et al., 2021]. A good example for this is the introduction of
transformer architectures in 2017 [Vaswani et al., 2017] which are the basis for recent
transformer-based recommender systems like SASRec [Kang and McAuley, 2018],
AttRec [Zhang et al., 2019], BERT4Rec [Sun et al., 2019] and Transformers4Rec
[de Souza Pereira Moreira et al., 2021].

2.3 Information Sources

Traditional recommender systems often consider only user-item interactions and do
not consider any additional contextual information like social connections, visited
locations, the user’s age, etc. In most cases, the available interaction data is sparse in
nature, with having, for example, less than 5% of all possible user-item interactions
[Truong et al., 2021]. In this respect, Adomavicius et al. [Adomavicius and Tuzhilin,
2008] extended the traditional user-item paradigm by representing the recommen-
dation context using information that is obtained (1) explicitly, by direct user input,
(2) implicitly, using methods to capture the information from the environment, or
(3) inferred, by analyzing interactions and building implicit connections. For exam-
ple, Jamali et al. [Jamali and Ester, 2010] tackle the rating prediction problem by
utilizing a Matrix Factorization model that includes existing social relations. In [Ma
et al., 2011], the authors introduce two social regularization methods to be applied
for Matrix Factorization in order to improve both the Mean Absolute Error (MAE)
and Root-Mean-Square Error (RMSE) when social information is available. The

2.4. SCALABLE RECOMMENDER SYSTEMS 25

authors of [Diaz-Aviles et al., 2012] improve Matrix Factorization for recommending
topics in real-time by using Twitter streams. On the other hand, in [Yao et al.,
2015] the authors rely on inferred data by adapting BPR to integrate topics that
are generated using the popular LDA approach [Blei et al., 2003].

Overall, the community has acknowledged the importance of other types of infor-
mation sources, ranging from social and location data to even measuring physi-
ological signals or personality traits, in a variety of recommendation tasks [Guo
et al., 2011, Bischoff, 2012, Elahi et al., 2013, Feng and Wang, 2012, Patro et al.,
2020, Berndsen et al., 2020]. In recent years for example, simultaneously with the
advances in deep learning, even visual features extracted from images have been
shown as a strong signal in learning the fashion preference [Kang et al., 2017] and
style [Liu et al., 2017b] of a user.

2.4 Scalable Recommender Systems

Modern recommendation systems tackle a multitude of operating challenges on a
daily basis. Especially with a large user and item base, it becomes challenging to
handle the increasing complexity of models (e.g., deep neural networks) within an
easily scalable system [Saberian and Basilico, 2021]. Most of the existing work adapt
their infrastructure and use offline batch processing (e.g., with frameworks such as
Spark [Zaharia et al., 2010] or GraphLab [Low et al., 2012]) with which they gen-
erate and cache candidate recommendations before they need to be served to the
user. This is the case for many stakeholders from industry like Netflix [Amatri-
ain, 2013], Microsoft [Ronen et al., 2013], Nike [Essinger et al., 2021], among many
others [Chan et al., 2013, Walunj and Sadafale, 2013, Dai et al., 2014]. Another
recommender infrastructure is RecDB [Sarwat et al., 2013] where the authors have
taken a database-driven approach. In this case, the system is integrated in a Post-
greSQL DBMS which stores the generated recommendation scores within a set of
views which can be queried using SQL statements.

In summary, to overcome the challenges of scalability like YouTube [Davidson et al.,
2010], Twitter [Gupta et al., 2013] or Pinterest [Liu et al., 2017a], most systems com-
bine infrastructure improvements with efficient machine learning algorithms [Garcin
et al., 2014, Freno, 2017, Eksombatchai et al., 2018].

2.5. REAL-TIME RECOMMENDATIONS 26

2.5 Real-time Recommendations

When applied in an online setting, one important aspect of recommender systems
is that they need to provide recommendations in real-time while processing new
streams of data incrementally. This is for instance the case when modeling a user’s
sequence of performed actions, in order to catch the shift in interest that can happen
at any point in time [Shani et al., 2005, Smirnova and Vasile, 2017]. To capture the
change in user feedback, frameworks for processing interactive data like Apache
Tez [Saha et al., 2015] can be used to build high-performance batch processing
applications.

In this regard, the authors of [Huang et al., 2015] present TencentRec, a system
to provide real-time recommendations based on Item-Based Collaborative Filtering
that tackles the conflict that exists when supporting "real-time, accurate and big
(data) challenges". Similarly, Chandramouli et al. [Chandramouli et al., 2011]
base their Collaborative Filtering approach on a stream processing system that
utilizes explicit rating data. Gupta et al. [Gupta et al., 2014] propose a real-
time twitter recommendation system using the temporally-correlated actions of each
user’s followers. They report a measured median latency of 7 seconds from the edge
creation event to the delivery of the recommendation due to event propagation
delays. Other related work [Das et al., 2007, Rendle and Schmidt-Thieme, 2008,
Diaz-Aviles et al., 2012, Chen et al., 2013] work neglect the temporal ordering of
information and propose a fast procedure to generate recommendations by focusing
on scalability and easy parallelization. For example, to incorporate incremental
updates, [Agarwal et al., 2010] propose to learn item-specific factors through online
regression, which leads to a fast online bi-linear factor model.

2.6 Evaluating Recommendations

An offline experimental setup is to date the most popular approach to quantify the
performance of a recommender system [Jannach et al., 2012]. Even though there
is not one exact way how to measure the performance of a recommender approach,
much work in the research community has based their algorithmic comparisons on
accuracy related methods like Root Mean Squared Error or normalized Discounted
Cumulative Gain [Herlocker et al., 2004, Gunawardana and Shani, 2009, Parra and

2.6. EVALUATING RECOMMENDATIONS 27

Sahebi, 2013]. Recent work, which focused on setting up online user studies, indicate
that an improvement in the offline accuracy performance does not directly translate
to the online setting with real users under real-time constraints [Gomez-Uribe and
Hunt, 2015b, Maksai et al., 2015]. For example, there are even large differences in
how the same recommender algorithm performs in only slightly different application
scenarios [Beel et al., 2016]. Nevertheless, reports on online studies like from [Lu
et al., 2020] are rather less common as they are hard to set up. Thus, since the
argumentation from [McNee et al., 2006] that “being accurate is not enough”, the
research direction is nowadays driven toward an evaluation of recommender systems
that extends well beyond providing accurate predictions. For instance, this has led
to investigating different trade-offs and measures like diversity, coverage or bias, just
to name a few [Ge et al., 2010, Nilashi et al., 2016, Han and Yamana, 2017, Ludewig
and Jannach, 2018].

Finally, related work has shown that reproducibility of research results is a challeng-
ing issue [Dacrema et al., 2019]. Hence, toolkits such as, e.g., LensKit [Ekstrand
et al., 2011] or Rival [Said and Bellogín, 2014] have been introduced that drive the
research community into that direction.

Chapter 3

Publications

This chapter presents the 18 publications and the corresponding contributions for
this cumulative thesis. More specifically, the contributions of this thesis are divided
into two parts. Firstly, the 6 main publications for each of the research questions
are listed as well as included in this chapter. Secondly, this thesis also lists the 12
additional publications which are referenced in order to additionally strengthen the
outcomes and findings of this thesis. A short overview of these publications, as well
as their contribution to the respective research questions can be seen in Table 3.

3.1 Main Publications

This section describes the 6 main contributions of this thesis which have already
been published. In addition to being listed in Table 3, each main publication is
accompanied by a short description as well as a statement of the respective contri-
bution. The printed versions of the listed work is in addition added at the end of
this chapter.

Lacic, E., Kowald, D., Eberhard, L., Trattner, C., Parra, D., and Marinho,
L. B. (2015). Utilizing online social network and location-based data to recom-
mend products and categories in online marketplaces. In Mining, Modeling, and
Recommending’Things’ in Social Media (pp. 96-115). Springer.

MP1

28

3.1. MAIN PUBLICATIONS 29

Notation Reference Research Questions
Main Publications

MP1 [Lacic et al., 2015a] RQ1
MP2 [Lacic et al., 2017] RQ2
MP3 [Lacic et al., 2014a] RQ3
MP4 [Lacic, 2016] RQ2, RQ3
MP5 [Lacic et al., 2019b] RQ3, RQ4
MP6 [Lacic et al., 2020] RQ4

Additional Publications
AP1 [Lacic et al., 2015b] RQ1
AP2 [Duricic et al., 2018] RQ1
AP3 [Lacic et al., 2014a] RQ1
AP4 [Reiter-Haas et al., 2017] RQ1
AP5 [Lacic et al., 2014c] RQ1, RQ2
AP6 [Traub et al., 2015] RQ2, RQ3
AP7 [Kowald et al., 2018] RQ2, RQ3
AP8 [Lacic et al., 2016] RQ2
AP9 [Lacic et al., 2015c] RQ2, RQ3
AP10 [Lacic et al., 2018a] RQ3
AP11 [Lacic et al., 2018b] RQ4
AP12 [Lacic et al., 2019a] RQ4

Table 3.1: Overview of the 6 main publications as well as the 12 additional publi-
cations made for answering all four research questions of this thesis.

About MP1. This work presents the impact of features that are obtained from
marketplace, social and location-based data, when applied to the task of producing
product and category recommendations in online marketplaces [Lacic et al., 2015a].
With respect to Research Questions 1, not only is a detailed evaluation presented
on the impact of different data sources, but also their combination with respect to
creating a hybrid recommender approach that improves the robustness of recom-
mendations in terms of accuracy, diversity and user coverage.

This work further lays the foundation for Research Question 2 and 3 as it becomes
eminent to support the utilization of additional data sources in application domains

3.1. MAIN PUBLICATIONS 30

with different types of data as well as to answer the question on how to do that in
real-time.

Contribution. The author of this thesis designed and performed the experiments,
implemented all the source code (i.e., algorithms, evaluation measures, experimental
pipeline, etc.) and analyzed the data. Lukas Eberhard crawled the Second Life
dataset that is used in this work. Dominik Kowald and Christoph Trattner assisted
in interpreting and presenting the experimental results. The author of this thesis
took the lead in writing the manuscript. All authors discussed the results and
contributed with writing the final manuscript.

Lacic, E., Kowald, D. and Lex, E. (2017). Tailoring Recommendations for a
Multi-Domain Environment. In Workshop on Intelligent Recommender Systems
by Knowledge Transfer and Learning (RecSysKTL’17) co-located with the 11th
ACM Conference on Recommender Systems (RecSys’17)

MP2

About MP2. Most recommender systems adapt their algorithms for items that
belong to one specific domain (e.g., movies, music, news, etc.). However, how to
simultaneously adapt a recommender system to a diverse set of domains, each having
their own requirements and data models, still continues to be an open challenge (i.e.,
Research Question 2).

The contribution of this paper is a unified design of a customizable and scalable rec-
ommendation system which accounts for multiple domains with diverse information
sources [Lacic et al., 2017]. To do that, it addresses the design decisions that should
be taken into account when building a multi-domain recommender system, as well
as demonstrates how the contributed ScaR framework can be adapted for different
domain experiments in an isolated manner.

Contribution. The author of this thesis implemented the ScaR recommender
framework that is presented in this work as well as conducted the reported ex-
periments. The author of this thesis also took the lead in writing the manuscript.
All authors provided critical feedback and helped in writing the final manuscript.

3.1. MAIN PUBLICATIONS 31

Lacic, E., Kowald, D., Parra, D., Kahr, M., and Trattner, C. (2014). Towards a
scalable social recommender engine for online marketplaces: The case of apache
solr. In Proceedings of the 23rd ACM International Conference on World Wide
Web (WWW’14), pp. 817-822

MP3

About MP3. This work presents how search engines can be utilized to build a real-
time recommender system for a social marketplace. In order to address Research
Question 3, [Lacic et al., 2014a] first compares the runtime performance of different
recommendation approaches, and second, compares their mean response time in form
of a performance load test with an increasing amount of recommendation requests
with and without data updates happening simultaneously.

Thus, this work tackles the problem of providing recommendations in real-time
with the Apache Solr search engine. This forms the basis for the two open-source
frameworks (i.e., SocRecM and ScaR) which are a technical contribution of this
thesis.

Contribution. The author of this thesis designed, implemented and performed
all experiments reported in this work. Dominik Kowald, Christoph Trattner and
Denis Parra assisted in interpreting the experimental results. The author of this
thesis took the lead in writing the manuscript. All authors discussed the results and
contributed with writing the final manuscript.

Lacic, E. (2016). Real-Time Recommendations in a Multi-Domain Environment.
In Extended Proceedings at Doctoral Consortium of the 27th ACM Conference on
Hypertext and Social Media (HT’16)

MP4

About MP4. This work presents how the ScaR recommender framework can
provide a scalable and customizable architecture, which is needed when providing

3.1. MAIN PUBLICATIONS 32

recommendations in real-times for multiple domains, In order to address both, Re-
search Question 2 and 3, [Lacic, 2016] investigates how an increasing request load
(i.e., number of incoming recommendation requests) will impact the system. It be-
comes apparent that an exponential growth in the runtime happens as the request
load increases. But, with scaling the recommender system horizontally, a significant
increase in the runtime performance can be seen. This shows that having scalability
is an important aspect when supporting multiple domains, as not every domain will
have the same request load.

Contribution. The author of this thesis implemented, configured and conducted
all the experiments which are reported in this work. This also includes setting up
the necessary server infrastructure to run the experiments. The author of this thesis
wrote the manuscript.

Lacic, E., Reiter-Haas, M., Duricic, T., Slawicek, V. and Lex, E. (2019). Should
we Embed? A Study on the Online Performance of Utilizing Embeddings for
Real-Time Job Recommendations. In Proceedings of the 13th ACM Conference
on Recommender Systems (RecSys’2019). ACM

MP5

About MP5. Learning latent item embeddings has recently become a popular
technique for recommender systems, even though many works report on state-of-
the-art performance in an offline setting, experiments on the user acceptance and
utility of embeddings under real-time constraints are scarce. As this ties to both, the
Research Question 3 and 4, [Lacic et al., 2019b] performs a multitude of A/B tests
which are evaluated with respect to the Click-Through-Rate (i.e., user acceptance)
and runtime performance. This online study is further conducted in the job domain
on two different recommendation scenarios, i.e., to recommend similar jobs and
personalizing the homepage.

This work shows that with respect to Research Question 3, certain scenarios exist
where the runtime performance can be improved alongside the final user acceptance.
Moreover, this work opens up the topic of Research Question 4 as it becomes clear
that, there exist other factors that drive the user on what kind of recommendation

3.1. MAIN PUBLICATIONS 33

is expected in a certain scenario. This shows that only measuring accuracy in an
offline setting is not enough.

Contribution. The author of this thesis implemented the algorithms which were
used for the online study, investigated the necessary requirements for conducting it
as well as defined the scope of the experiments. Markus Reiter-Haas and Tomis-
lav Ðuričić assisted in deploying the software. Markus Reiter-Haas assisted with
preparing the graphical interpretations of the experimental results. The author of
this thesis took the lead in writing the manuscript. All authors discussed the results
and contributed with writing the final manuscript.

Lacic, E., Reiter-Haas, M., Kowald, D., Dareddy, M. R., Cho, J. and Lex, E.
(2020). Using Autoencoders for Session-based Job Recommendations. In the
Journal of User Modeling and User-Adapted Interaction (UMUAI). Springer

MP6

About MP6. This works tackles a special case of real-time recommender systems,
namely, providing recommendations to short-lived anonymous session users. Specif-
ically, [Lacic et al., 2020] presents different autoencoder architectures to encode
sessions which can be used to generate a recommendation in a k-nearest neigh-
bor manner. With respect to Research Question 4, the autoencoder architectures
together with state-of-the-art session-based approaches are evaluated on measures
which go beyond the usually utilized accuracy metric. That is, this works looks
into the impact of session-based approaches on the system-based and session-based
novelty as well as coverage. The outcome of this work shows that the proposed
autoencoder-based methods can achieve a comparable accuracy while outperform-
ing the state-of-the-art approaches with respect to beyond accuracy measures.

Contribution. The author of this thesis conceived the main idea, implemented
all the proposed algorithms, as well as prepared and run the experiments that are
reported in this work. Manoj Reddy Dareddy and Junghoo Cho assisted in framing
the scope of this work. Elisabeth Lex and Dominik Kowald aided in interpreting the
experimental results. Markus Reiter-Haas provided the proprietary dataset. The

3.2. ADDITIONAL PUBLICATIONS 34

author of this thesis took the lead in writing the manuscript. All authors discussed
the results and contributed with writing the final manuscript.

3.2 Additional Publications

In addition to the main publications, the following 12 published papers have also
contributed to the four research questions, but their printed versions are not in the
main focus of this thesis. As such, each publication in this section is accompanied
by a short overview of its general idea whereas the contribution to the respective
research question can be seen in Table 3.

Lacic, E., Kowald, D., Traub, M., Luzhnica, G., Simon, J., and Lex, E. (2015).
Tackling Cold-Start Users in Recommender Systems with Indoor Positioning Sys-
tems. In Proceedings of the 9th ACM Conference on Recommender Systems (Rec-
Sys’15)

AP1

About AP1. This paper looks at utilizing additional data sources to tackle the
cold-start user problem (i.e., provide recommendations for new users in the system).
As such, [Lacic et al., 2015b] showed that creating a user-location network out of the
raw location data can produce even better recommendation accuracy for "extreme"
cold-start users. This demonstrates that location-based data can be a rich source of
useful for recommendations and thus, opens up potential future work on applying
it at indoor locations (see Section 4.3).

Contribution. The author of this thesis designed and conducted all the experi-
ments in this work. The author of this thesis took the lead in writing the manuscript.
All authors discussed the results and contributed with writing the final manuscript.

3.2. ADDITIONAL PUBLICATIONS 35

Duricic, T., Lacic, E., Kowald, D., and Lex, E. (2018). Trust-Based Collabora-
tive Filtering: Tackling the Cold Start Problem Using Regular Equivalence. In
Proceedings of the 12th ACM Conference on Recommender Systems (RecSys’18)

AP2

About AP2. This work continues the research on cold-start users and investigates
the usage of explicit trust relationships as an additional data source to mitigate
this problem. But as trust relationships between users are usually a sparse data
source, this paper explored the use of regular equivalence for trust propagation in a
cold-start user setting. The evaluation results suggest that trust propagation is an
important feature when using trust networks as an additional data source. Moreover,
regular equivalence was demonstrated as an effective technique for propagating trust
in a network. [Duricic et al., 2018]

Contribution. Tomislav Duricic conceived the original idea as well as conducted
all the experiments that are reported in this work. The author of this thesis assisted
in the design of the experiments, preparing the source code for the algorithmic
baselines, interpreting and reporting the results. Tomislav Duricic took the lead
in writing the manuscript. All authors discussed the results and contributed with
writing the final manuscript.

Lacic, E., Kowald, D., Seitlinger, P., Trattner, C., and Parra, D. (2014). Recom-
mending items in social tagging systems using tag and time information. In Pro-
ceedings of the 1st International Workshop on Social Personalisation co-located
with the 25th ACM Conference on Hypertext and Social Media (HT’2014)

AP3

About AP3. This publication dives further into the research on the utilization
of additional data for the recommendation task. Specifically, [Lacic et al., 2014b]
demonstrated that when social tags are additionally available in an online system,
the recommendation performance can be improved by utilizing the temporal patterns
of their usage.

3.2. ADDITIONAL PUBLICATIONS 36

Contribution. The author of this thesis designed and conducted all the experi-
ments in this work. Dominik Kowald assisted in adapting the algorithms to utilize
temporal patterns. The author of this thesis took the lead in writing the manuscript.
All authors discussed the results and contributed with writing the final manuscript.

Reiter-Haas, M., Slawicek, V. and Lacic, E. (2017). Studo Jobs: Enriching Data
With Predicted Job Labels. In Workshop on Recommender Systems and Social
Network Analysis (RS-SNA’17) co-located with the 17th International Conference
on Knowledge Technologies and Data-driven Business (i-KNOW’17)

AP4

About AP4. This work introduces the recommendation problem within the job
domain. For this it was first needed to tackle the problem of missing job labels which
would be needed for a better navigability of job recommendations. As such, [Reiter-
Haas et al., 2017] shows that it is not necessarily needed to only rely on additional
data sources when wanting to generate recommendations. Rather, it is possible with
a high accuracy to enrich the current data with, for example, labels that in turn can
be used as an input for the recommender approach or as a navigation component
for the user when exploring at the provided recommendations.

Contribution. Markus Reiter-Haas conducted all the experiments that are re-
ported in this work. The author of this thesis supervised and guided the design of
the experiments and helped interpret the results. Markus Reiter-Haas took the lead
in writing the manuscript. All authors discussed the results and contributed with
writing the final manuscript.

Lacic, E., Kowald, D., and Trattner, C. (2014). Socrecm: A scalable social
recommender engine for online marketplaces. In Proceedings of the 25th ACM
Conference on Hypertext and Social Media (HT’14), pp. 308-310.

AP5

3.2. ADDITIONAL PUBLICATIONS 37

About AP5. The contributions of this work are two-fold. Firstly, it is shown that
recommendation quality can be improved for cold-start users by utilizing social data
as well as the effect of sequentially increasing the amount of social data. Secondly,
this work presents the SocRecM framework which, which is one of the open-source
frameworks that is contributed with this thesis. Thus, [Lacic et al., 2014c] has
laid the foundation by providing a recommendation framework for online social
marketplaces which is then used to extend it for a multi-domain environment.

Contribution. The author of this thesis designed and conducted all the experi-
ments in this work, as well as implemented the presented SocRecM recommendation
framework. The author of this thesis also took the lead in writing the manuscript.
All authors discussed the results and contributed with writing the final manuscript.

Traub, M., Kowald, D., Lacic, E., Schoen, P., Supp, G., and Lex, E.
(2015). Smart booking without looking: providing hotel recommendations in the
TripRebel portal. ,p. 50. ACM. (best demo honourable mention) In Proceedings
of the 15th International Conference on Knowledge Technologies and Data-driven
Business (i-KNOW’15)

AP6

About AP6. This work presents a recommender framework for the hotel (i.e.,
tourism) domain where data updates and new user-hotel interactions should be
immediately taken into account for the calculation of recommendations. This is
realized by starting to work on implementing the ScaR recommender framework
out of the previously mentioned SocRecM framework in order to support the hotel
domain. That is, [Traub et al., 2015] presented an adaptation of various state-of-the-
art recommender algorithms with respect to scalability and real-time performance.
Additionally, the work explored how to apply the use-cases and requirements which
are specific for a system that recommends hotels.

Contribution. The author of this thesis implemented the recommendation algo-
rithms used in this work and assisted in setting the research experiments. Matthias
Traub took the lead in writing the manuscript. All authors discussed the results
and contributed with writing the final manuscript.

3.2. ADDITIONAL PUBLICATIONS 38

Kowald, D., Lacic, E., Theiler, D., and Lex, E. (2018). AFEL-REC: A Rec-
ommender System for Providing Learning Resource Recommendations in Social
Learning Environments. In the Social Interaction-Based Recommender Systems
(SIR’18) Workshop co-located with the 27th International Conference on Infor-
mation and Knowledge Management (CIKM’18)

AP7

About AP7. This paper presents further adaptations of the ScaR framework
within the social learning environment. The presented AFEL-REC system shows
how to leverage the proposed software architecture in order to provide real-time
recommendations of learning resources. In addition, the AFEL-REC system is built
to handle any kind of data that is available in social learning environments like
metadata of learning resources, user interactions or social tags. As such, [Kowald
et al., 2018] provides the experimental results of three recommendation use-cases
implemented in AFEL-REC and shows that recommendation accuracy and coverage
can be improved by utilizing social data in form of tags.

Contribution. Dominik Kowald designed the experiments reported in this work.
The author of this thesis assisted with adapting the ScaR recommender framework
for the setting up the experiments as well as interpreting the results. Dominik
Kowald took the lead in writing the manuscript. All authors discussed the results
and contributed with writing the final manuscript.

Lacic, E., Traub, M., Kowald, D., Kahr, M., and Lex, E. (2016). Need Help?
Recommending Social Care Institutions. In Workshop on Recommender Systems
and Big Data Analytics (RSBDA’16) co-located with the 16th International Con-
ference on Knowledge Technologies and Data-driven Business (i-KNOW’16)

AP8

About AP8. This works demonstrates how to further adapt the ScaR framework
for the domain of Social Care Institutions. Moreover, a hybrid algorithm is proposed

3.2. ADDITIONAL PUBLICATIONS 39

which utilizes multiple data sources. That is, it is proposed to dynamically incorpo-
rate the time context of historical search results and the gathered negative feedback
from previous recommendations [Lacic et al., 2016]. These two factors are espe-
cially important to consider in the domain of social care institutions as over time,
the locations, availability and, responsibilities of individual institutions change.

Contribution. The author of this thesis designed and implemented the recommen-
dation algorithms used in this work. Matthias Traub took the lead in writing the
manuscript. All authors discussed the results and contributed with writing the final
manuscript.

Lacic, E., Traub, M., Kowald, D., and Lex, E. (2015). ScaR: Towards a Real-
Time Recommender Framework Following the Microservices Architecture. In
Workshop on Large Scale Recommender Systems (LSRS’15) co-located with the
9th ACM Conference on Recommender Systems (RecSys’15)

AP9

About AP9. This work presents ScaR, a flexible Java-based recommender frame-
work that was developed in this thesis. ScaR adopts an architecture that is based
on microservices and utilizes the Apache Solr search engine in order to (1) gener-
ate recommendations in real-time, (2) provide scalability of different recommender
algorithms, (3) support offline and online evaluations and, (4) incorporate frequent
data updates without the necessity of time-expensive model retrainings.

Contribution. The author of this thesis designed and implemented the ScaR rec-
ommender framework that is presented in this work. The author of this thesis also
conducted all the reported experiments and took the lead in writing the manuscript.
All authors provided critical feedback and helped in writing the final manuscript.

3.2. ADDITIONAL PUBLICATIONS 40

Lacic, E., Kowald, D., and Lex, E. (2018). Neighborhood Troubles: On the Value
of User Pre-Filtering To Speed Up and Enhance Recommendations. In the Inter-
national Workshop on Entity Retrieval (EYRE’18) co-located with the 27th In-
ternational Conference on Information and Knowledge Management (CIKM’18)

AP10

About AP10. The focus of this work is on one of the most popular recommender
algorithms that is used to date, namely, Collaborative Filtering. The paper tackles
the problem of increasing the runtime performance as such can play a crucial role
in settings with a high load of recommendation requests and where scaling up the
system is not feasible. The paper thus proposes a user pre-filtering step that can
be done in a greedy fashion. This leads in a speed up with respect to the runtime
performance and in some cases can even increase the recommendation accuracy.

Contribution. The author of this thesis designed and implemented the recommen-
dation algorithms used in this work. The author of this thesis also conducted all
the reported experiments and took the lead in writing the manuscript. All authors
provided critical feedback and helped in writing the final manuscript.

Lacic, E., Kowald, D., Reiter-Haas, M., Slawicek, V. and Lex, E. (2018). Be-
yond Accuracy Optimization: On the Value of Item Embeddings for Student
Job Recommendation. In the International Workshop on Multi-dimensional In-
formation Fusion for User Modeling and Personalization (IFUP’2018) co-located
with the 11th ACM International Conference on Web Search and Data Mining
(WSDM’2018)

AP11

About AP11. This work explores how the recent popularization of learning item
embeddings can be used to improve content-based recommendation performance
beyond accuracy. For that, a model from the human memory theory was proposed
to combine item embeddings and was applied in the job domain. This led to the

3.2. ADDITIONAL PUBLICATIONS 41

finding that modelling the frequency and recency of user-job interactions can result
in more robust recommendations with respect to not only accuracy, but also diversity
and novelty.

Contribution. The author of this thesis designed and conducted all the reported
experiments in this work. Markus Reiter-Haas and Valentin Slawicek provided the
dataset used in this work. The author of this thesis took the lead in writing the
manuscript. All authors provided critical feedback and helped in writing the final
manuscript.

Lacic, E., Kowald, D., Theiler, D., Traub, M., Kuffer, L., Lindstaedt, S., and
Lex, E. (2019). Evaluating Tag Recommendations for E-Book Annotation Us-
ing a Semantic Similarity Metric. In REVEAL Workshop co-located with ACM
Conference on Recommender Systems (RecSys’2019)

AP12

About AP12. This paper presents a hybrid tag recommender system for e-books
and proposes to evaluate the system on a novel semantic similarity metric. The
paper thus shows how to validate a tag recommender on semantic matches instead of
focusing on direct "hits", where the recommendation needs to be an exact syntactical
match. Interpreting a recommender in this way can still lead to a correct accuracy
assessment but is in addition beneficial in better interpreting the recommendation
quality.

Contribution. The author of this thesis designed the evaluation measures and
algorithms, as well as conducted all the reported experiments in this work. Dominik
Kowald assisted in the design of the experiments and interpreting the results. Lucky
Kuffer provided the dataset used in this work. The author of this thesis and Dominik
Kowald took a joint lead and contributed equally in writing the manuscript. All
authors provided critical feedback and helped in writing the final manuscript.

Utilizing Online Social Network
and Location-Based Data to Recommend

Products and Categories in Online Marketplaces

Emanuel Lacic1(B), Dominik Kowald1, Lukas Eberhard2, Christoph Trattner3,
Denis Parra4, and Leandro Balby Marinho5

1 Know-Center, Graz University of Technology, Graz, Austria
{elacic,dkowald}@know-center.at

2 IICM, Graz University of Technology, Graz, Austria
lukas.eberhard@tugraz.at

3 Norwegian University of Science and Technology, Trondheim, Norway
chritrat@idi.ntnu.no

4 Pontificia Universidad Catlica de Chile, Santiago, Chile
dparra@ing.puc.cl

5 UFCG, Campina Grande, Brazil
lbmarinho@dsc.ufcg.edu.br

Abstract. Recent research has unveiled the importance of online social
networks for improving the quality of recommender systems and encour-
aged the research community to investigate better ways of exploiting
the social information for recommendations. To contribute to this sparse
field of research, in this paper we exploit users’ interactions along three
data sources (marketplace, social network and location-based) to assess
their performance in a barely studied domain: recommending products
and domains of interests (i.e., product categories) to people in an online
marketplace environment. To that end we defined sets of content- and
network-based user similarity features for each data source and studied
them isolated using an user-based Collaborative Filtering (CF) approach
and in combination via a hybrid recommender algorithm, to assess which
one provides the best recommendation performance. Interestingly, in our
experiments conducted on a rich dataset collected from SecondLife, a
popular online virtual world, we found that recommenders relying on
user similarity features obtained from the social network data clearly
yielded the best results in terms of accuracy in case of predicting prod-
ucts, whereas the features obtained from the marketplace and location-
based data sources also obtained very good results in case of predicting
categories. This finding indicates that all three types of data sources are
important and should be taken into account depending on the level of
specialization of the recommendation task.

Keywords: Recommender systems · Online marketplaces · SNA ·
Social data · Location-based data · SecondLife · Collaborative
filtering · Item recommendations · Product recommendations · Category
prediction

c© Springer International Publishing Switzerland 2015
M. Atzmueller et al. (Eds.): MUSE/MSM 2013, LNAI 8940, pp. 96–115, 2015.
DOI: 10.1007/978-3-319-14723-9 6

Utilizing Online Social Network and Location-Based Data 97

1 Introduction

Research on recommender systems has gained tremendous popularity in recent
years. Especially since the hype of the social Web and the rise of social media and
networking platforms such as Twitter or Facebook, recommender systems are
acknowledged as an essential feature helping users to, for instance, discover new
connections between people or resources. Especially in the field of e-commerce
sites, i.e., online marketplaces, current research is dealing with the improvement
of the prediction task in order to recommend products that are more likely to
match peoples preferences.

Typically, these online systems calculate personalized recommendations using
only one data source, namely marketplace data (e.g., implicit user feedback such
as previously viewed or purchased products - see also e.g., [1–3]). Although this
approach has been well established and performs reasonably well, nowadays,
online marketplaces often also have the opportunity to leverage additional infor-
mation about the users coming from social and location-based data sources (e.g.,
via Facebook-connect). Even though previous research has shown that this kind
of data can be useful in the wide field of recommender systems (see Sect. 2),
it remains an open problem how to fully exploit these additional data sources
(social network and location-based data) to improve the recommendation task
in online marketplaces.

Moreover, it is often not the most important thing in online marketplaces
to predict the exactly right products to the users but to suggest domains of
interests (i.e., product categories) the users could like and could use for further
browsing (e.g., [1,4]). Thus, it is not only important to investigate to which
extent social and location-based data sources can be used to improve product
recommendations but also to which extent this data can also be used for the
recommendation of product categories.

To contribute to this sparse field of research, in this paper we present a first
take on this problem in form of a research project that aims at understanding
how different sources of interaction data can help in recommending products and
categories to people in an online marketplace. In this respect, we are particularly
interested in studying the efficiency of different user similarity features derived
from various dimensions, not only from the marketplace but also from online
social networks and location-based data to recommend products and categories
to people via a user-based Collaborative Filtering (CF) approach (we have chosen
a user-based CF approach since user-based CF is not only a well-established
recommender algorithm but also allows us to incorporate various user-based
similarity features coming from different data sources, which has been shown to
play an important role in making more accurate predictions [4,5]). Specifically,
we raise the following two research questions:

– RQ1 : To which extent can user similarity features derived from marketplace,
social network and location-based data sources be utilized for the recommen-
dation of products and categories in online marketplaces?

98 E. Lacic et al.

– RQ2 : Can the different marketplace, social network and location-based user
similarity features and data sources be combined in order to create a hybrid
recommender that provides more robust recommendations in terms of predic-
tion accuracy, diversity and user coverage?

In order to address these research questions, we examined content-based and
network-based user similarity feature sets for user-based CF over three data
sources (marketplace, social and location-based data) as well as their combina-
tions using a hybrid recommender algorithm and assessed the results via a more
comprehensive set of recommender evaluation metrics than previous works. The
study was conducted using a large-scale dataset crawled from the virtual world
of SecondLife. In this way, we could study the utility of each user similarity
feature separately as well as combine them in the form of hybrid approaches to
show which combinations, per data source and globally, provide the best recom-
mendations in terms of recommendation accuracy, diversity and user coverage.
Summing this up, the contributions of this work are the following:

– Contrary to previous work in this area [1,2], we not only employ one source
of data (marketplace) for the problem of predicting product purchases but
show how data coming from three different sources (marketplace, social and
location-based data) can be exploited in this context.

– In contrast to related work in the field, we provide also an extensive evalua-
tion of various content-based and network-based user similarity features via
user-based Collaborative Filtering as well as their combinations via a hybrid
recommender approach.

– Finally, we also provide evidence to what extent top-level and sub-level pur-
chase categories can be predicted which is in contrast to previous work (e.g.,
[1]) where the authors only focused on the problem recommending top-level
categories to the users.

To the best of our knowledge, this is the first study that offers such a compre-
hensive user similarity feature selection and evaluation for product and category
recommendation in online marketplaces.

Overall, the paper is structured as follows: we begin by discussing related
work in Sect. 2. Then we present the datasets (Sect. 3) and the feature description
(Sect. 4) used in our extensive evaluation. After that, we present our experimen-
tal setup in Sect. 5 and show the results of our experiments in Sect. 6. Finally,
on Sect. 7 we conclude the paper and discuss the outlook.

2 Related Work

Most of the literature that leverages social data for recommendations is focused
on recommending users, (e.g., [2,6]), tags (e.g., [7]) or points-of-interest (e.g., [4]),
although some works have exploited social information for item or product
recommendation, being the most important ones model-based. Jamali et al. [5]

Utilizing Online Social Network and Location-Based Data 99

introduced SocialMF, a matrix factorization model that incorporates social rela-
tions into a rating prediction task, decreasing RMSE with respect to previous
work. Similarly, Ma et al. [4] incorporated social information in two models of
matrix factorization with social regularization, with improvements in both MAE
and RMSE for rating prediction. Among their evaluations, they concluded that
choosing the right similarity feature between users plays an important role in
making a more accurate prediction.

On a more general approach, Karatzoglou et al. [8] use implicit feedback and
social graph data to recommend places and items, evaluating with a ranking task
and reporting significant improvements over past related methods. Compared to
these state-of-the-art approaches, our focus on this paper is at providing a richer
analysis of feature selection (similarity features) with a more comprehensive
evaluation than previous works, and in a rarely investigates domain: product
recommendation in a social online marketplace. For instance, in Guo et al. [2]
or Trattner et al. [3] the authors leveraged social interactions between sellers
and buyers in order to predict sellers to customers. Other relevant work in this
context is the study of Zhang and Pennacchiotti [1] who showed how top-level
categories can be better predicted in a cold-start setting on eBay by exploiting
the user’s “likes” from Facebook.

3 Datasets

In our study we rely on three datasets1 obtained from the virtual world Second-
Life (SL). The main reason for choosing SL over real world sources are manifold
but mainly due to the fact that currently there are no other datasets available
that comprise marketplace, social and location data of users at the same time.
For our study we focused on users who are contained in all three sources of data,
which are 7,029 users in total. To collect the data (see Table 1) we crawled the
SL platform as described in our previous work [9,10].

3.1 Marketplace Dataset

Similar to eBay, SecondLife provides an online trading platform where users can
trade virtual goods with each other. Every seller in the SL marketplace2 owns
her own seller’s store and publicly offers all of the store’s products classified
into different categories (a hierarchy with up to a maximum of four different
categories per product). Furthermore, sellers can apply meta-data such as price,
title or description to their products. Customers in turn, are able to provide
reviews to products.

We extracted 29,802 complete store profiles, with corresponding 39,055 trad-
ing interactions, and 2,162,466 products, out of which 30,185 were purchased.

1 Note: The datasets could be obtained by contacting the fourth author of this work.
2 https://marketplace.secondlife.com/.

100 E. Lacic et al.

Table 1. Basic statistics of the SL datasets used in our study.

Marketplace dataset (Market)

Number of products 30, 185

Number of products with categories 24, 276

Number of purchases 39, 055

Number of purchases with categories 31, 164

Mean number of purchases per user 5.56

Mean number of purchases per products 1.29

Mean number of categories per product 2.86

Number of top-level categories 23

Number of low-level categories 532

Mean number of top-level categories purchase 1, 354.96

Mean number of low-level categories purchase 58.58

Number of sellers 8, 149

Mean number of purchases per seller 3.70

Online social network dataset (Social)

Number of interactions 490, 236

Mean number of interactions 69.75

Number of groups 39, 180

Mean number of groups per user 9, 419

Number of interests 5.57

Mean number of interests per user 1.34

Location-based dataset (Location)

Number of different favorite locations 10, 538

Mean number of favorite locations per user 5.77

Number of different shared locations 5, 736

Mean number of shared locations per user 1.94

Number of different monitored locations 1, 887

Mean number of monitored locations per user 6.52

From the purchased products, 24,276 are described using categories which are dif-
ferentiated in top-level categories and low-level categories (i.e., the assigned prod-
uct categories on the lowest possible level of the category hierarchy). An example
of a product in the marketplace of SL is shown in the first image of Fig. 1.

3.2 Online Social Network Dataset

The online social network MySecondLife3 is similar to Facebook with regard
to postings: users can interact with each other by sharing text messages and

3 https://my.secondlife.com/.

Utilizing Online Social Network and Location-Based Data 101

(a) SecondLife store (b) SecondLife social stream

Fig. 1. Examples for a store in the marketplace and a social stream of an user in the
online social network of the virtual world SecondLife.

commenting or loving (= liking) these messages. From the extracted 7,029 com-
plete user profiles, we gathered 39,180 different groups users belong to, 9,419
different interests users defined for themselves and 490,236 interactions between
them. The second image of Fig. 1 shows an example of an user profile in the
online social network of SL.

3.3 Location-Based Dataset

The world of Second Life is contained within regions, i.e., locations which are
independent from each other. Overall, we extracted three different sources of
location-based data in our experiments:

(a) Favored Locations: Every user of SL can specify up to 10 so-called “Picks”
in their profile representing her favorite locations that other users can view
in the user’s MySecondLife profile. We found that the extracted users picked
40,558 locations from 10,538 unique locations;

(b) Shared Locations: Users in SL can also share information about their cur-
rent in-world position through in-world pictures called “snapshots”, which
also include in-world GPS information (similar as Foursquare). Overall, we
identified 13,637 snapshots in 5,736 unique locations;

(c) Monitored Locations: As in real life, users in SL can create events in the vir-
tual world and publicly announce them in a public event calendar. We col-
lected these events, with an accurate location and start time, and extracted
157,765 user-location-time triples, with 1,887 unique locations.

102 E. Lacic et al.

4 Feature Description

As shown in our previous work (e.g., [10]), similarities between users can be
derived in two different ways: either we calculate similarities between users on the
content (= meta-data) provided directly by the user profiles or on the network
structure of the user profiles interacting with each other. In the following sections
we present more details about these ideas.

4.1 Content-Based User Similarity Features

We define our set of content-based user similarity features based on different
types of entities or meta-data information that are directly associated with the
user profiles in our data sources. In the case of the marketplace dataset these
entities are purchased products, product categories and sellers of the products,
in the case of the social network these are groups and interests the users have
assigned, and in the case of the location-based data source these are favored
locations, shared locations and monitored locations. Formally, we define the
entities of a user u as Δ(u) in order to calculate the similarity between two
users, u and v.

The first content-based user similarity feature we induce is based on the
entities two users have in common. It is called Common Entities and is given by:

sim(u, v) = |Δ(u) ∩ Δ(v)| (1)

The second similarity feature, Total Entities, is defined as the union of two users’
entities and is calculated by:

sim(u, v) = |Δ(u) ∪ Δ(v)| (2)

These two user similarity features are combined by Jaccard’s Coefficient for Enti-
ties as the number of common entities divided by the total number of entities:

sim(u, v) =
|Δ(u) ∩ Δ(v)|
|Δ(u) ∪ Δ(v)| (3)

4.2 Network-Based User Similarity Features

In our experiments we consider all networks as an undirected graph G〈V,E〉 with
V representing the user profiles and e = (u, v) ∈ E if user u performed an action
on v (see also [10]). In the case of the social network, these actions are defined
as social interactions, which are a combination of likes, comments and wallposts.
In the case of the location-based dataset, actions between users are determined
if they have met each other in the virtual world at the same time in the same
location4. Furthermore, the weight of an edge waction(u, v) gives the frequency of

4 Note: We derived the networks in our study from the location-based dataset only
for the monitored locations, since the exact timestamps are not available for the
favored nor the shared locations in the datasets.

Utilizing Online Social Network and Location-Based Data 103

a specific action between two users u and v. Finally, this network structure also
let us determine the neighbors of users in order to calculate similarities based
on this information. We define the set of neighbors of a node v ∈ G as Γ (v) =
{u | (u, v) ∈ E}.

The first network-based user similarity feature we introduce, uses the number
of Directed Interactions between two users and is given by:

sim(u, v) = waction(u, v) (4)

In contrast to Directed Interactions, the following user similarity features are
based on the neighborhood of two users: The first neighborhood similarity feature
is called Common Neighbors and represents the number of neighbors two users
have in common:

sim(u, v) = |Γ (u) ∩ Γ (v)| (5)

To also take into account the total number of neighbors of the users, we intro-
duced Jaccard’s Coefficient for Common Neighbors. It is defined as:

sim(u, v) =
|Γ (u) ∩ Γ (v)|
|Γ (u) ∪ Γ (v)| (6)

A refinement of this feature was proposed as Adamic Adar [11], which adds
weights to the links since not all neighbors in a network have the same tie
strength:

sim(u, v) =
∑

z∈Γ (u)∩Γ (v)

1

log(|Γ (z)|) (7)

Another related similarity feature introduced by Cranshaw et al. [12], called
Neighborhood Overlap, measures the structural overlap of two users. Formally,
this is written as:

sim(u, v) =
|Γ (u) ∩ Γ (v)|

|Γ (u)| + |Γ (v)| (8)

The Preferential Attachment Score, first mentioned by Barabasi et al. [13], is
another network-based similarity feature with the goal to prefer active users in
the network. This score is the product of the number of neighbors of each user
and is calculated by:

sim(u, v) = |Γ (u)| · |Γ (v)| (9)

5 Experimental Setup

In this section we provide a detailed description of our experimental setup. First,
we describe the recommender approaches we have chosen in order to evaluate our
three data sources (marketplace, social network and location-based data) as well
as our derived user similarity features for the task of recommending products and
categories. Afterwards, we describe the evaluation methodology and the metrics
used in our study.

104 E. Lacic et al.

5.1 Recommender Approaches

In this subsection we describe the recommender approaches we have used to
tackle our research questions described in the introductory section of this paper.
All mentioned approaches have been implemented into our scalable big data
social recommender framework SocRec [9,14], an open-source framework which
can be obtained from our Github repository5.

Baseline. As baseline for our study, we used a simple MostPopular approach
recommending the most popular products or categories in terms of purchase
frequency to the users.

Recommending Products. The main approach we adopt to evaluate our
data sources and user similarity features for the task of recommending products
is a User-based Collaborative Filtering (CF) approach. The basic idea of this
approach is that users who are more similar to each other, e.g., have similar
taste, will likely agree or rate on other resources in a similar manner [15]. Out
of the different CF approaches, we used the non-probabilistic user-based nearest
neighbor algorithm where we first find the k-nearest similar users and afterwards
recommend the resources of those user as a ranked list of top-N products to the
target user that are new to her (i.e., she has not purchased those products in
the past). As outlined before, we have chosen this approach since user-based
CF is not only a well-established recommender algorithm but also allows us
to incorporate various user-based similarity features coming from different data
sources, which has been shown to play an important role in making more accurate
predictions [4,5].

The similarity values of the user pairs sim(u, v) are calculated based on the
user similarity features proposed in Sect. 4 (i.e., constructing the neighborhood).
Based on these similarity values, each item i of the k most similar users for the
target user u is ranked using the following formula [15]:

pred(u, i) =
∑

v∈neighbors(u)

sim(u, v) (10)

Recommending Categories. For the task of recommending categories and in
contrast to previous work (e.g., [1]), we are not only focusing here on the predic-
tion of top-level categories but also on the prediction of low-level categories. The
prediction of categories was implemented as an extension of product predictions.
Thus, for each product in the list of recommended products (i.e., the products
obtained from the k-nearest neighbors of user u based on a user similarity fea-
ture), we extracted the assigned category on the highest level in the case of
predicting top-level categories and the assigned category on the lowest level in
the case of predicting low-level categories. Afterwards, we assigned a score to

5 https://github.com/learning-layers/SocRec.

Utilizing Online Social Network and Location-Based Data 105

each extracted category ei in the set of all extracted categories Eu for the target
user u based on a similar method as proposed in [1]:

pred(u, ei) =
purc(Eu, ei)∑

e∈Eu

purc(Eu, e)
(11)

where purc(Eu, ei) gives the number of times the category ei occurs in the set
of all extracted categories Eu for user u.

Combining User Similarity Features and Data Sources. To further
explore how to combine our data sources and features for recommendation, we
investigated different hybridization methods (see also [16]). The hybrid approach
chosen in the end is known as Weighted Sum. The score of each recommended
item in the Weighted Sum algorithm is calculated as the weighted sum of the
scores for all recommender approaches. It is given by:

Wreci
=

∑

sj∈S

(Wreci,sj
· Wsj

) (12)

where the combined weighting of the recommended item i, Wreci
, is given by the

sum of all single weightings for each recommended item in an approach Wreci,sj

multiplied by the weightings of the recommender approaches Wsj
. We weighted

each recommender approach Wsj
based on the nDCG@10 value obtained from

the individual approaches (calculated based on an additional evaluation set
where we withheld 20 purchased products - see Sect. 5.2).

We also experimented with other hybrid approaches, known as Cross-source
and Mixed Hybrid [16]. However, these approaches have not yielded better results
than the Weighted Sum algorithm.

5.2 Evaluation Method and Metrics

To evaluate the performance of each approach in a recommender setting, we
performed a number of off-line experiments. Therefore, we split the SL dataset
in two different sets (training and test set) using a method similar to the one
described in [9], i.e., for each user we withheld 10 purchased products from the
complete dataset and added them to the test set to be predicted. Since we did
not use a p-core pruning technique to prevent a biased evaluation, there are also
users with less than 10 relevant products. We did not include these users into
our evaluation since they did not have enough purchase data available that could
be used to produce reasonable recommendations based on the marketplace data,
although this data is worthwhile for our user-based CF approach to find suitable
neighbors. Thus, we used a post-filtering method, where all the recommendations
were still calculated on the whole datasets but accuracy estimates were calculated
only based on these filtered user profiles (= 959 users).

106 E. Lacic et al.

To finally quantify the performance of each of our recommender approaches,
we used a diverse set of well-established metrics in recommender systems [17,18].
These metrics are as follows:

Recall (R@k) is calculated as the number of correctly recommended prod-
ucts divided by the number of relevant products, where rk

u denotes the top k
recommended products and Ru the list of relevant products of a user u in the
set of all users U . Recall is given by [19]:

R@k =
1

|U |
∑

u∈U

(
|rk

u ∩ Ru|
|Ru|) (13)

Precision (P@k) is calculated as the number of correctly recommended
products divided by the number of recommended products k. Precision is defined
as [19]:

P@k =
1

|U |
∑

u∈U

(
|rk

u ∩ Ru|
k

) (14)

Normalized Discounted Cumulative Gain (nDCG@k) is a ranking-
dependent metric that not only measures how many products can be correctly
predicted but also takes the position of the products in the recommended list
with length k into account. The nDCG metric is based on the Discounted Cum-
mulative Gain (DCG@k) which is given by [20]:

DCG@k =

|rk
u|∑

k=1

(
2B(k) − 1

log2(1 + k)
) (15)

where B(k) is a function that returns 1 if the recommended product at position
i in the recommended list is relevant. nDCG@k is calculated as DCG@k divided
by the ideal DCG value iDCG@k which is the highest possible DCG value that
can be achieved if all the relevant products would be recommended in the correct
order. Taken together, it is given by the following formula [20]:

nDCG@k =
1

|U |
∑

u∈U

(
DCG@k

iDCG@k
) (16)

Diversity (D@k), as defined in [17], can be calculated as the average dis-
similarity of all pairs of resources in the list of recommended products rk

u. Given
a distance function d(i, j) that is the distance, or the dissimilarity between two
products i and j, D is given as the average dissimilarity of all pairs of products
in the list of recommended products [17]:

D@k =
1

|U |
∑

u∈U

(
1

k · (k − 1)

∑

i∈R

∑

j∈rk
u,j �=i

d(i, j)) (17)

User Coverage (UC) is defined as the number of users for whom at least
one product recommendation could have been calculated (|Ur|) divided by total
number of users |U | [21]:

Utilizing Online Social Network and Location-Based Data 107

UC =
|Ur|
|U | (18)

All mentioned performance metrics are calculated and reported based on the
top-10 recommended products.

6 Results

In this section we highlight the results of our experiments for predicting prod-
ucts, low-level and top-level categories in terms of algorithmic performance in
order to tackle our two research questions presented in Sect. 1. Our evaluation
has been conducted in two steps: in the first step we compared the different rec-
ommender approaches with the corresponding user similarity features isolated
(RQ1), see Table 2) and in the second step we combined these approaches in the
form of hybrid recommendations (RQ2, see Table 3). All results are presented
by recommender accuracy, given by nDCG@10, P@10 (Precision) and R@10
(Recall), D@10 (Diversity) and UC (User Coverage).

6.1 Recommendations Based on Single User Similarity Features

The results for the recommendation of products, low-level categories and top-
level categories, using content-based and network-based user similarity features
derived from our three data sources (marketplace, social and location-based
data), are shown in Table 2 in order to address our first research question (RQ1).
The results also include the Most Popular (MP) approach as a baseline. Addi-
tionally, the performance of the different data sources is also shown in Fig. 2 in
form of Recall/Precision plots.

Recommending Products. Regarding the task of predicting product pur-
chases (first column in Table 2), the best results in terms of recommender accu-
racy are reached by the network-based features based on interactions (e.g., loves,
comments, wallposts) between the users in the social network. Surprisingly these
approaches clearly outperform the user-based CF approaches relying on mar-
ketplace data, which implies that social interactions of the users are a better
predictor to recommend products to people than marketplace data.

Another interesting finding is that the neighborhood-based features (Com-
mon Neighbors, Jaccard, Neighborhood Overlap and Adamic/Adar) also seem to
be better indicators to determine the similarity between users than the direct
interactions between these pairs. Only the Preferential Attachment Score based
recommender approach does not perform well in this context, although it still
performs better than the features derived from the marketplace data source.
This is to some extent expected and reveals that the individual’s taste is more
driven by the user’s peers rather than by the popular users in the SecondLife
social network.

In terms of the marketplace and location-based user similarity features, the
results reveal that they do not provide high estimates of accuracy. This is

108 E. Lacic et al.

T
a
b
le

2
.
R

es
u
lt

s
fo

r
th

e
u
se

r-
b
a
se

d
C

F
a
p
p
ro

a
ch

es
b
a
se

d
o
n

va
ri

o
u
s

u
se

r
si

m
il
a
ri

ty
fe

a
tu

re
s

sh
ow

in
g

th
ei

r
p
er

fo
rm

a
n
ce

fo
r

th
e

ta
sk

s
o
f

p
re

d
ic

ti
n
g

p
ro

d
u
ct

s,
lo

w
-l
ev

el
ca

te
g
o
ri

es
a
n
d

to
p
-l
ev

el
ca

te
g
o
ri

es
,
re

sp
ec

ti
v
el

y
(R

Q
1
).

N
o
te

:
B

o
ld

n
u
m

b
er

s
in

d
ic

a
te

th
e

h
ig

h
es

t
a
cc

u
ra

cy
va

lu
es

p
er

fe
a
tu

re
se

t
a
n
d

“
*
”

in
d
ic

a
te

th
e

ov
er

a
ll

h
ig

h
es

t
a
cc

u
ra

cy
es

ti
m

a
te

s.

P
ro

d
u
ct

s
lo

w
-l
ev

el
ca

te
g
o
ri

es
to

p
-l
ev

el
ca

te
g
o
ri

es

U
se

r
S
im

.
F
ea

tu
re

n
D

C
G

@
1
0

P
@

1
0

R
@

1
0

n
D

C
G

@
1
0

P
@

1
0

R
@

1
0

n
D

C
G

@
1
0

P
@

1
0

R
@

1
0

D
@

1
0

U
C

M
o
st

P
o
p
u
la

r
. 0

0
4
8

. 0
0
3
7

.0
0
4
7

.0
1
8
5

.0
2
0
7

.0
1
5
7

. 2
3
8
0

.2
7
3
0

.2
2
2
1

.6
3
9
2

1
0
0
.0

%

Market

Content

C
o
m

m
o
n

P
u
rc

h
a
se

s
. 0

0
9
7

.0
0
7
3

.0
0
9
4

.0
7
2
4

.0
6
4
1

.0
7
5
7

.4
5
5
7

.3
8
8
4

.4
6
3
6

.5
8
9
2

9
0
.5

1
%

C
o
m

m
o
n

S
el

le
rs

. 0
1
4
6

.0
1
0
2

.0
1
4
2

.1
1
1
9

.1
0
0
5

.1
1
3
2

. 5
2
5
1

.4
6
1
0

.5
1
8
3

.6
3
7
2

9
9
.0

6
%

J
a
cc

a
rd

S
el

le
rs

. 0
1
5
8

.0
1
1
4

.0
1
5
4

.1
0
9
2

. 1
0
2
9

.1
0
4
7

.5
0
6
1

.4
9
4
0

.4
9
2
7

.6
0
5
4

9
9
.0

6
%

T
o
ta

l
S
el

le
rs

. 0
0
6
5

.0
0
5
2

.0
0
7
3

.0
9
2
9

.0
7
4
3

.0
9
7
7

.5
0
7
9

.4
0
9
4

.5
1
1
3

.6
5
6
6

9
9
.0

6
%

C
o
m

m
o
n

C
a
te

g
o
ri

es
.0

0
5
0

. 0
0
3
9

.0
0
5
4

. 1
0
9
0

.1
0
5
1

.1
0
4
1

.5
0
7
3

.5
3
6
6

.4
6
7
4

. 6
1
2
3

9
9
.4

8
%

J
a
cc

a
rd

C
a
te

g
o
ri

es
.0

0
5
8

. 0
0
3
9

.0
0
4
9

.1
3
6
1

.1
3
0
1

.1
2
8
8

.5
4
5
6
*

.5
7
0
1
*

.5
2
0
0
*

.6
3
6
4

9
9
.4

8
%

T
o
ta

l
C

a
te

g
o
ri

es
. 0

0
0
7

. 0
0
0
6

.0
0
0
9

.0
2
2
5

.0
2
3
6

.0
2
8
0

. 3
3
1
7

.3
3
5
3

.4
2
1
5

.6
5
7
5

9
9
.4

8
%

Social

Content

C
o
m

m
o
n

G
ro

u
p
s

. 0
0
2
2

.0
0
1
0

.0
0
1
4

.0
4
0
2

. 0
3
2
0

.0
4
2
5

.3
2
3
3

.2
5
6
7

.3
4
3
9

.4
3
0
7

6
4
.1

3
%

J
a
cc

a
rd

G
ro

u
p
s

. 0
0
2
7

.0
0
1
6

.0
0
2
1

.0
4
3
3

.0
3
3
9

.0
4
5
9

.3
2
7
2

.2
5
5
7

.3
4
6
4

.4
3
3
2

6
4
.1

3
%

T
o
ta

l
G

ro
u
p
s

.0
0
0
6

. 0
0
0
5

. 0
0
0
7

. 0
3
2
4

.0
2
7
2

.0
3
6
1

.3
2
1
4

.2
3
2
3

.3
5
6
3

.4
4
6
6

6
4
.1

3
%

C
o
m

m
o
n

In
te

re
st

s
.0

0
0
5

. 0
0
0
2

.0
0
0
2

.0
2
3
5

.0
2
0
1

.0
2
6
7

.2
2
8
5

.1
8
1
0

.2
4
7
4

.3
1
8
5

4
6
. 5

1
%

J
a
cc

a
rd

In
te

re
st

s
. 0

0
0
3

. 0
0
0
2

.0
0
0
3

.0
2
1
9

.0
2
0
1

.0
2
2
7

.2
4
2
4

.1
8
5
7

.2
5
5
1

.3
1
6
1

4
6
.5

1
%

T
o
ta

l
In

te
re

st
s

. 0
0
0
4

.0
0
0
2

.0
0
0
3

.0
2
8
5

.0
2
3
5

.0
3
3
7

. 2
6
3
9

. 1
7
9
3

.2
7
6
5

.3
3
1
9

4
6
.5

1
%

Network

D
ir

ec
te

d
In

te
ra

ct
io

n
s

. 0
3
4
5

.0
3
8
9

.0
4
7
1

.0
5
8
2

.0
5
2
8

.0
6
3
0

.1
7
4
3

.1
7
5
6

. 1
7
6
9

.2
1
6
9

3
8
.7

9
%

C
o
m

m
o
n

N
ei

g
h
b
o
rs

.1
1
0
7

. 1
0
2
1

.1
1
0
4

.1
2
1
6

.1
2
1
2

.1
2
4
3

.2
6
3
3

.2
8
8
7

.2
5
8
4

.3
3
0
0

6
2
.8

8
%

J
a
cc

a
rd

C
o
m

m
o
n

N
ei

g
h
b
o
rs

.1
3
8
1

. 1
1
4
3

.1
3
7
8

.1
5
2
3

.1
3
8
6

.1
6
1
8

.3
7
2
6

.3
4
1
9

.3
8
1
4

.4
4
5
5

7
1
. 5

3
%

N
ei

g
h
b
o
rh

o
o
d

O
v
er

la
p

. 1
4
3
4
*

.1
2
2
2
*

.1
4
7
1
*

. 1
6
2
0
*

.1
4
8
6
*

.1
7
1
9
*

.3
8
5
5

. 3
4
7
1

. 3
9
6
5

.4
5
1
4

7
1
.5

3
%

A
d
a
m

ic
/
A

d
a
r

.1
0
1
3

. 0
9
4
1

.1
0
6
7

.1
2
4
1

. 1
1
8
7

.1
2
7
2

.3
0
2
8

.3
1
5
3

.3
0
4
2

.3
7
6
2

6
9
.3

4
%

P
re

f.
A

tt
a
ch

.
S
co

re
.0

3
1
7

. 0
3
3
1

.0
3
8
0

.0
6
3
0

.0
5
6
9

.0
6
5
0

.3
2
0
2

.2
8
3
8

. 3
3
3
2

.4
4
2
0

7
0
.7

0
%

Location

Content

C
o
m

m
o
n

F
av

o
re

d
L
o
ca

ti
o
n
s

.0
0
1
9

.0
0
1
0

.0
0
1
5

. 0
4
2
7

. 0
3
9
3

.0
4
8
1

. 4
6
7
4

. 3
7
7
3

.4
9
4
6

.6
4
3
7

9
6
.3

5
%

J
a
cc

a
rd

F
av

o
re

d
L
o
ca

ti
o
n
s

.0
0
2
8

.0
0
1
7

.0
0
2
2

.0
4
7
2

.0
4
1
6

.0
5
3
1

.4
6
3
6

.3
7
7
7

.4
9
1
9

.6
4
9
0

9
6
. 3

5
%

T
o
ta

l
F
av

o
re

d
L
o
ca

ti
o
n
s

.0
0
3
1

.0
0
1
6

.0
0
2
3

.0
4
5
9

.0
4
0
0

.0
5
1
3

. 4
7
9
4

. 3
8
0
2

.5
0
6
1

.6
6
3
5

9
6
.3

5
%

C
o
m

m
o
n

S
h
a
re

d
L
o
ca

ti
o
n
s

.0
0
0
3

.0
0
0
3

.0
0
0
4

. 0
1
3
0

. 0
1
0
3

.0
1
4
4

.1
4
4
9

.1
1
8
0

.1
5
9
9

.2
0
6
7

3
0
. 4

5
%

J
a
cc

a
rd

S
h
a
re

d
L
o
ca

ti
o
n
s

.0
0
0
5

. 0
0
0
3

.0
0
0
4

.0
1
3
4

.0
1
1
5

.0
1
4
5

.1
4
2
0

. 1
2
0
8

.1
5
2
2

.2
0
4
2

3
0
.4

5
%

T
o
ta

l
S
h
a
re

d
L
o
ca

ti
o
n
s

.0
0
0
0

.0
0
0
0

.0
0
0
0

. 0
0
9
2

.0
0
7
4

.0
1
0
6

.1
3
4
0

.1
0
7
6

.1
5
2
0

.2
0
3
1

3
0
.4

5
%

C
o
m

m
o
n

M
o
n
it

o
re

d
L
o
ca

ti
o
n
s

.0
0
1
6

.0
0
1
0

.0
0
1
4

.0
4
0
8

.0
3
4
5

.0
4
4
9

.4
8
2
5

.3
8
0
4

.5
1
3
9

.6
7
3
4

9
8
.2

3
%

J
a
cc

a
rd

M
o
n
it

o
re

d
L
o
ca

ti
o
n
s

.0
0
1
7

.0
0
0
8

.0
0
1
2

.0
4
7
3

.0
4
0
3

.0
5
4
6

. 4
9
8
7

.3
7
9
5

.5
3
8
7

.6
7
6
0

9
8
. 2

3
%

T
o
ta

l
M

o
n
it

o
re

d
L
o
ca

ti
o
n
s

.0
0
1
1

.0
0
0
6

.0
0
0
9

. 0
3
6
6

. 0
3
3
1

.0
4
4
2

.4
7
7
0

.3
7
0
3

.5
3
5
4

.6
7
5
7

9
8
. 2

3
%

Network

C
o
m

m
o
n

N
ei

g
h
b
o
rs

. 0
0
1
5

.0
0
0
7

.0
0
1
0

.0
2
9
8

.0
2
7
1

.0
3
4
5

.3
3
7
7

.2
6
2
3

.3
6
3
2

.4
6
0
9

6
7
.0

5
%

J
a
cc

a
rd

C
o
m

m
o
n

N
ei

g
h
b
o
rs

.0
0
1
6

.0
0
0
8

.0
0
1
1

. 0
3
2
2

.0
2
6
1

.0
3
6
7

.3
3
0
6

.2
6
2
3

.3
5
4
5

.4
5
7
9

6
7
. 0

5
%

N
ei

g
h
b
o
rh

o
o
d

O
v
er

la
p

.0
0
1
4

.0
0
0
7

.0
0
1
0

.0
2
9
5

.0
2
6
7

.0
3
3
9

. 3
3
5
9

.2
6
1
4

.3
6
0
8

.4
6
1
5

6
7
.0

5
%

A
d
a
m

ic
/
A

d
a
r

.0
0
1
5

.0
0
0
6

.0
0
0
9

.0
3
2
0

.0
2
7
2

.0
3
5
3

.3
3
3
2

.2
5
9
8

.3
5
3
0

.4
5
9
5

6
7
.0

5
%

P
re

f.
A

tt
a
ch

.
S
co

re
.0

0
0
3

. 0
0
0
2

.0
0
0
2

.0
2
7
0

.0
2
1
3

.0
3
3
5

.3
6
3
4

.2
8
2
5

.3
4
5
8

.4
5
8
3

7
0
.5

9
%

Utilizing Online Social Network and Location-Based Data 109

(a) Products (b) low-level categories (c) top-level categories

(d) Products (e) low-level categories (f) top-level categories

(g) Products (h) low-level categories (i) top-level categories

Fig. 2. Recall/Precision plots for the single user similarity features derived from the
marketplace (a, b, c), social (d, e, f) and location-based (g, h, i) data sources, showing
the performance of each feature for k = 1–10 recommended items, low-level categories
or top-level categories, respectively (RQ1). Note: Each feature name in the legends is
derived in the following way: the first two letters describe the data source, the subscript
denotes the user similarity feature and the value in brackets defines the used data field
(e.g., SNNO(I) stands for the Social Network data source, the Neighborhood Overlap
similarity feature and Interactions data field).

110 E. Lacic et al.

interesting since our previous work [10,22] showed that these features perform
extremely well in predicting tie strength or social interactions between users.
However, the features derived from the marketplace and the location-based data
sources provide the best results with respect to Diversity (D) and User Coverage
(UC).

Recommending Categories. Regarding the tasks of predicting low-level and
top-level categories, the second and third column of Table 2 report the accu-
racy estimates for the different user similarity features based on the extracted
categories. As expected, all user similarity features end up with a much higher
accuracy than for predicting products, especially in the case of top-level cate-
gories, because of the lower level of specialization of these recommendation tasks.
In the case of the low-level category predictions, the approaches based on social
interaction features still perform better than the approaches based on features of
the marketplace or location-based data sources. Interestingly, the content-based
user similarity features derived from the social network as well as the location-
based features, which performed the worst at product predictions, perform much
better for low-level categories, now also outperforming the MP baseline.

In the case of the top-level category recommendations, it can be seen that the
user similarity features of all three data sources provide quite similar results in
terms of recommender accuracy. The approach based on the Jaccard’s coefficient
for categories performs best in terms of nDCG@10, P@10 and R@10. This result
is very interesting since this feature is based on the marketplace data source
that provided quite bad results in the case of product predictions. Summed
up, we see that user similarity features derived from all data sources are very
useful indicators for recommendations, although they depend on the level of
specialization of the recommendation task (RQ1).

6.2 Recommendations Based on Combined Data Sources

The findings of the last subsection suggests that a combination of features from
all three data sources (marketplace, social network and location-based data)
should provide more robust recommendations in case of both tasks, predicting
products and categories (RQ2). Thus, Table 3 shows the results of the hybrid
approaches based on theses data sources in order to tackle our second research
question. As before, the first column indicates the results for the product pre-
diction, the second column for the low-level category prediction and the third
column for the top-level category prediction. Additionally, Fig. 3 shows the per-
formance of the hybrid approaches based on the three data sources for k = 1–10
recommended products, low-level categories or top-level categories, respectively,
in form of Recall/Precision plots.

Recommending Products. Regarding the product prediction task, we see
again that the recommender approaches based on the social network data source
clearly outperform the ones based on the marketplace and location-based data
sources as well as the MP baseline. Furthermore, when combining all three data
sources, not only the overall recommendation accuracy is increased with respect

Utilizing Online Social Network and Location-Based Data 111

T
a
b
le

3
.
R

es
u
lt

s
fo

r
th

e
h
y
b
ri

d
a
p
p
ro

a
ch

es
b
a
se

d
o
n

o
u
r

th
re

e
d
a
ta

so
u
rc

es
fo

r
th

e
ta

sk
s

o
f
p
re

d
ic

ti
n
g

p
ro

d
u
ct

s,
lo

w
-l
ev

el
ca

te
g
o
ri

es
a
n
d

to
p
-l
ev

el
ca

te
g
o
ri

es
.
T

h
e

re
su

lt
s

sh
ow

th
a
t

a
ll

th
re

e
d
a
ta

so
u
rc

es
(m

a
rk

et
p
la

ce
,
so

ci
a
l
n
et

w
o
rk

a
n
d

lo
ca

ti
o
n
-b

a
se

d
d
a
ta

)
a
re

im
p
o
rt

a
n
t

in
d
ic

a
to

rs
fo

r
ca

lc
u
la

ti
n
g

re
co

m
m

en
d
a
ti

o
n
s,

si
n
ce

a
h
y
b
ri

d
co

m
b
in

a
ti

o
n

o
f
a
ll

d
a
ta

so
u
rc

es
p
ro

v
id

ed
th

e
b
es

t
re

su
lt

s
in

ca
se

o
f
p
re

d
ic

ti
n
g

p
ro

d
u
ct

s,
lo

w
-l
ev

el
ca

te
g
o
ri

es
a
n
d

to
p
-l
ev

el
ca

te
g
o
ri

es
(R

Q
2
).

N
o
te

:
B

o
ld

n
u
m

b
er

s
in

d
ic

a
te

th
e

h
ig

h
es

t
a
cc

u
ra

cy
va

lu
es

a
cr

o
ss

th
e

d
a
ta

so
u
rc

es
a
n
d

“
*
”

in
d
ic

a
te

th
e

ov
er

a
ll

h
ig

h
es

t
a
cc

u
ra

cy
es

ti
m

a
te

s.

P
ro

d
u
ct

s
lo

w
-l
ev

el
ca

te
g
o
ri

es
to

p
-l
ev

el
C

a
te

g
o
ri

es

S
et

s
n
D

C
G

@
1
0

P
@

1
0

R
@

1
0

n
D

C
G

@
1
0

P
@

1
0

R
@

1
0

n
D

C
G

@
1
0

P
@

1
0

R
@

1
0

D
@

1
0

U
C

M
o
st

P
o
p
u
la

r
.0

0
8
2

.0
0
2
1

.0
1
2
2

.0
1
8
5

.0
2
0
7

.0
1
5
7

.2
3
8
0

.2
7
3
0

.2
2
2
1

.5
9
4
5

1
0
0
.0

0
%

WeightedSum

M
a
rk

et
C

o
n
te

n
t

. 0
1
5
1

.0
1
0
3

.0
1
4
2

.1
0
5
1

.0
8
8
6

.1
0
4
6

.5
2
3
2

.4
4
7
6

.5
2
1
0

.6
4
2
1

9
9
.7

9
%

S
o
ci

a
l

C
o
n
te

n
t

.0
0
3
0

.0
0
1
9

.0
0
2
5

.0
7
0
2

.0
4
3
2

.0
5
7
1

.5
5
5
5

.3
2
7
4

.4
5
2
3

.5
6
0
3

8
1
.6

5
%

N
et

w
o
rk

.1
4
1
6

.1
1
8
0

.1
4
5
0

.2
4
5
4
*

.1
4
1
6

.1
7
4
0

.5
7
0
8

.3
3
8
5

.4
0
4
7

.4
5
9
1

7
1
.5

3
%

C
o
m

b
in

ed
. 1

4
1
8

. 1
1
6
5

.1
4
5
4

.2
1
0
4

.1
5
1
5

.1
9
4
2

.5
9
0
1

.4
1
3
1

.5
4
4
6

.6
2
4
5

9
2
.7

0
%

L
o
ca

ti
o
n

C
o
n
te

n
t

.0
0
3
6

.0
0
2
1

.0
0
3
0

.0
5
5
6

.0
4
0
6

.0
5
5
6

.5
5
3
5

.3
8
7
0

.5
5
3
5

.6
9
2
3

1
0
0
.0

0
%

N
et

w
o
rk

.0
0
1
5

.0
0
0
7

.0
0
1
0

.0
5
3
5

.0
2
8
4

.0
3
7
8

.5
3
5
9

.2
6
7
2

.3
7
8
3

.4
8
6
4

7
0
.5

9
%

C
o
m

b
in

ed
.0

0
3
6

.0
0
2
2

.0
0
3
1

.0
5
4
0

.0
4
0
6

.0
5
4
0

.5
4
9
7

.3
8
3
2

.5
4
9
7

.6
9
1
4

1
0
0
.0

0
%

C
o
m

b
in

ed
.1

4
6
0
*

.1
1
8
7
*

.1
4
9
3
*

.2
1
6
3

.1
7
0
8

. 2
1
5
9

.5
9
7
8
*

.4
6
5
6

.5
9
6
5
*

.6
6
4
2

1
0
0
.0

0
%

C
o
m

b
in

ed
T
o
p

3
.1

4
5
9

.1
1
8
6

.1
4
7
5

.2
1
6
1

.1
8
0
1
*

.2
1
6
1
*

.5
8
2
9

.4
8
9
8
*

.5
8
2
9

.6
5
3
0

1
0
0
.0

0
%

112 E. Lacic et al.

(a) Products (b) low-level categories (c) top-level categories

Fig. 3. Recall/Precision plots for the hybrid approaches showing the performance of
each data source for k = 1–10 recommended products, low-level categories or top-level
categories, respectively (RQ2).

to nDCG@10, P@10 and R@10, but also the User Coverage (UC) is increased
to the maximum of 100 %.

This means that the hybrid approach combines the strengths of the user
similarity features of all three data sources in order to be capable of providing
accurate recommendations for all users in the datasets. Another hybrid approach
shown in Table 3 combines only the best user similarity features from each data
source (referred to as Top 3) and reaches higher accuracy estimates, but lower
Diversity (D).

Recommending Categories. In contrast to the results of the product pre-
dictions, that showed that the recommender based on the social network data
source clearly outperforms the recommenders based on the marketplace and
location-based data sources, the results of the category predictions (second and
third column of Table 3) do not show that big differences between the three data
sources. With respect to the low-level category predictions, we again observe
that the recommender based on the social network data source still provides the
highest accuracy estimates.

Interestingly, in this case also the recommenders based on the other two
data sources provide reasonable results, which has not been the case of predict-
ing products, where the location-based recommender even was outperformed by
the MP baseline. Based on these results we would assume that marketplace
and location-based data sources are suitable of providing accurate predictions
in more general recommendation tasks. The results for the top-level category
predictions prove this assumption since in this case the recommenders based on
marketplace and location-based data sources even provide better results in terms
of recommender accuracy, Diversity and User Coverage than the one based on
social network data in case of the content-based features. As before, the com-
bination of all three data sources provide again the best results. Summed up,
this results prove our assumption derived from RQ1, that all three data sources

Utilizing Online Social Network and Location-Based Data 113

are important for calculating recommendations, since a combination of all data
sources provided the best results in case of predicting products, low-level cate-
gories and top-level categories (RQ2).

7 Conclusions and Future Work

In this work we presented first results of a recently started project that tries
to utilize various user similarity features derived from three data sources (mar-
ketplace, social network and location-based data) to recommend products and
points of interests (i.e., low-level and top-level categories) to people in an online
marketplace setting. This section concludes the paper with respect to our two
research questions and gives an outlook into the future.

The first research question of this work (RQ1) dealt with the question as
to which extent user similarity features derived from marketplace, social net-
work and location-based data sources can be utilized for the recommendation of
products and categories in online marketplaces. To tackle this question we imple-
mented various user-based Collaborative Filtering (CF) approaches based on the
user similarity features from the data sources and tested them isolated. As the
results have shown, the user-based CF approaches that utilize features of online
social network data to calculate the similarities between users performed best
in case of predicting products, significantly outperforming the other approaches
relying on both – marketplace and location-based user data. However, this behav-
ior changed in the case of predicting low-level and top-level categories where the
differences between the three data sources got substantially smaller. Surpris-
ingly, with respect to the top-level category predictions, the marketplace and
location-based features even reached the highest results in terms of accuracy,
Diversity (D) and User Coverage (UC).

These results showed that user similarity features of all three data sources
are important indicators for recommendations and suggests that combining them
should result into more robust recommendations, especially in cases of multiple
recommendation tasks on different levels of specialization (topics and categories).
Thus, our second research question (RQ2) tried to tackle the question if the dif-
ferent marketplace, social network and location-based user similarity features
and data sources can be combined in order to create a hybrid recommender that
provides more robust recommendations in terms of prediction accuracy, diversity
and user coverage. In order to address this question we implemented and evalu-
ated hybrid recommenders that combined the features of the data sources. The
results proved our assumption and showed that hybrid recommender that com-
bined user similarity features of all three data sources provided the best results
across all accuracy metrics (nDCG@10, P@10, R@10) and all settings (prod-
uct, low-level category and top-level category recommendations). Moreover, this
hybrid recommender also provided a User Coverage of 100 % and thus, is able
to provide these accurate recommendation to all users in the datasets.

Although the results of this study are based on a dataset obtained from the
virtual world SecondLife, we believe that it bears great potential to create a

114 E. Lacic et al.

sequence of interesting studies that may have implications for the “real” world
(see e.g., [23]). For instance, one of the potential interesting issues we are cur-
rently exploring is predicting products and categories to users in a cold-start
setting (i.e., for users that only have purchases a few or even no products in
the past) by a diversity of features. Other important work we plan is the use
of state-of-the-art model-based approaches in order to assess whether the sig-
nals extracted from similarity features in the current analysis can be replicated
(in the case of social data) or improved (in the case of location data) for different
recommendation tasks.

We have also shown that using the interaction information between users
improves not only the task of product recommendation, but also the recom-
mendation of low-level and top-level categories. Thus, we are also interested in
studying the extent to which recommendations can be improved by utilizing
content-based similarity features derived from the users’ social streams.

Acknowledgments. This work is supported by the Know-Center and the EU funded
project Learning Layers (Grant Agreement 318209). Moreover, parts of this work were
carried out during the tenure of an ERCIM “Alain Bensoussan” fellowship programme.
The Learning Layers project is supported by the European Commission within the 7th
Framework Program, under the DG Information society and Media (E3), unit of Cul-
tural heritage and technology-enhanced learning. The Know-Center is funded within
the Austrian COMET Program - Competence Centers for Excellent Technologies -
under the auspices of the Austrian Ministry of Transport, Innovation and Technology,
the Austrian Ministry of Economics and Labor and by the State of Styria. COMET is
managed by the Austrian Research Promotion Agency (FFG).

References

1. Zhang, Y., Pennacchiotti, M.: Predicting purchase behaviors from social media. In:
Proceedings of WWW ’13, pp. 1521–1532 (2013)

2. Guo, S., Wang, M., Leskovec, J.: The role of social networks in online shopping:
Information passing, price of trust, and consumer choice. In: Proceedings of EC
’11, pp. 157–166. ACM (2011)

3. Trattner, C., Parra, D., Eberhard, L., Wen, X.: Who will trade with whom? Pre-
dicting buyer-seller interactions in online trading platforms through social net-
works. In: Proceedings of WWW ’14, pp. 387–388. ACM (2014)

4. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social
regularization. In: Proceedings of WSDM ’11, pp. 287–296. ACM (2011)

5. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for
recommendation in social networks. In: Proceedings of RecSys ’10, pp. 135–142.
ACM, New York (2010)

6. Bischoff, K.: We love rock’n’roll: analyzing and predicting friendship links in
Last.fm. In: Proceedings of WebSci ’12, pp. 47–56. ACM (2012)

7. Feng, W., Wang, J.: Incorporating heterogeneous information for personalized
tag recommendation in social tagging systems. In: Proceedings of KDD ’12,
pp. 1276–1284. ACM (2012)

Utilizing Online Social Network and Location-Based Data 115

8. Delporte, J., Karatzoglou, A., Matuszczyk, T., Canu, S.: Socially enabled prefer-
ence learning from implicit feedback data. In: Blockeel, H., Kersting, K., Nijssen,
S., Železný, F. (eds.) ECML PKDD 2013, Part II. LNCS, vol. 8189, pp. 145–160.
Springer, Heidelberg (2013)

9. Lacic, E., Kowald, D., Parra, D., Kahr, M., Trattner, C.: Towards a scalable social
recommender engine for online marketplaces: The case of apache solr. In: Proceed-
ings of WWW ’14, pp. 817–822. ACM (2014)

10. Steurer, M., Trattner, C.: Acquaintance or partner? Predicting partnership in
online and location-based social networks. In: Proceedings of ASONAM’13.
IEEE/ACM (2013)

11. Adamic, L., Adar, E.: Friends and neighbors on the web. Soci. Netw. 25, 211–230
(2003)

12. Cranshaw, J., Toch, E., Hong, J., Kittur, A., Sadeh, N.: Bridging the gap between
physical location and online social networks. In: Proceedings of the 12th ACM
International Conference on Ubiquitous Computing, pp. 119–128. ACM (2010)

13. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

14. Lacic, E., Kowald, D., Trattner, C.: Socrecm: A scalable social recommender engine
for online marketplaces. In: Proceedings of HT ’14, pp. 308–310 (2014)

15. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recom-
mender systems. In: The adaptive web. Springer (2007) 291–324.

16. Bostandjiev, S., O’Donovan, J., Höllerer, T.: Tasteweights: a visual interactive
hybrid recommender system. In: Proceedings of RecSys ’12, pp. 35–42. ACM (2012)

17. Smyth, B., McClave, P.: Similarity vs. Diversity. In: Aha, D.W., Watson, I. (eds.)
ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001)

18. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22, 5–53 (2004)

19. Van Rijsbergen, C.J.: Foundation of evaluation. J. Doc. 30, 365–373 (1974)
20. Parra, D., Sahebi, S.: Recommender systems: sources of knowledge and evaluation

metrics. In: Velásquez, J.D., Palade, V., Jain, L.C. (eds.) Advanced Techniques in
Web Intelligence-2. SCI, vol. 452, pp. 149–176. Springer, Heidelberg (2013)

21. Ge, M., Delgado-Battenfeld, C., Jannach, D.: Beyond accuracy: evaluating recom-
mender systems by coverage and serendipity. In: Proceedings of the Fourth ACM
Conference on Recommender Systems, pp. 257–260. ACM (2010)

22. Steurer, M., Trattner, C.: Predicting interactions in online social networks: an
experiment in second life. In: Proceedings of the 4th International Workshop on
Modeling Social Media, p. 5. ACM (2013)

23. Szell, M., Sinatra, R., Petri, G., Thurner, S., Latora, V.: Understanding mobility
in a social petri dish. Scientific Reports 2 (2012)

Tailoring Recommendations for a Multi-Domain Environment
Emanuel Lacic
Know-Center Graz

Graz, Austria
elacic@know-center.at

Dominik Kowald
Know-Center Graz

Graz, Austria
dkowald@know-center.at

Elisabeth Lex
Graz University of Technology

Graz, Austria
elisabeth.lex@tugraz.at

ABSTRACT
Recommender systems are acknowledged as an essential instru-
ment to support users in finding relevant information. However,
the adaptation of recommender systems to multiple domain-specific
requirements and data models still remains an open challenge. In
the present paper, we contribute to this sparse line of research with
guidance on how to design a customizable recommender system
that accounts for multiple domains with heterogeneous data. Us-
ing concrete showcase examples, we demonstrate how to setup a
multi-domain system on the item and system level, and we report
evaluation results for the domains of (i) LastFM, (ii) FourSquare,
and (iii) MovieLens. We believe that our findings and guidelines
can support developers and researchers of recommender systems
to easily adapt and deploy a recommender system in distributed
environments, as well as to develop and evaluate algorithms suited
for multi-domain settings.

KEYWORDS
Recommender Systems; Multi-Domain Recommendation; Hetero-
geneous Data; Customizing Recommendation Approaches

1 INTRODUCTION
In the past decade, there has been a vast amount of research in
the field of recommender systems. Most of these systems offer
recommendations adapted for items belonging to a single domain
(e.g., movies , music , news , etc.). However, supporting different
domain-specific data models is still an open challenge, which is
neglected by many recommender systems and that has just been
recently taken up by the recommender systems’ research community.

The work of [2] has actually been the first attempt to define the
concept of a domain in the context of recommender systems. The
authors distinguish between four different domain notations, namely
(i) attribute level, where items are of the same type (e.g., movie
genres), (ii) type level, where items are of similar types but share
some attributes (e.g., movies and tv shows), (iii) item level, where
items are not of the same type and differ in most or all attributes
(e.g., movies and books) and, (iv) system level, where items and
users belong to different systems (e.g., LastFM and MovieLens).
Moreover, they distinguish between the concept of multi-domain
recommendations and cross-domain recommendations. The goal of
cross-domain recommendation is to utilize the knowledge derived

RecSysKTL Workshop @ ACM RecSys ’17, August 27, 2017, Como, Italy
© 2017 Copyright is held by the author(s).

(a) E-commerce. (b) Hotels.

(c) Scientific talks. (d) News articles.

Figure 1: Providing recommendations in multiple domains
requires supporting heterogeneous data structures, allow for
domain-specific algorithm customization, as well as to support
service isolation and fault tolerance.

from one or more source domains in order to generate predictions
for a target domain. However, they also state that multi-domain
approaches have mainly focused on the provision of cross-domain
recommendations by jointly considering user preferences for items
in various systems.

Other related works implicitly share this definition [2] and focus
on cross-domain recommendations rather than on multi-domain ones.
Thus, the main focus has been to tackle the data sparsity problem
(e.g., via active transfer learning [14]) by utilizing Collaborative
Filtering [4, 7, 10] and Content-based Filtering approaches [3, 11].

In the present paper, we build upon these works and we extend
the scope of multi-domain recommender systems by introducing
several guidelines concerning topics such as data heterogeneity and
customization that should be taken into consideration. We base
our findings on real-world applications (e.g., e-commerce1, hotels2,
scientific talks3 or news articles4 – just to name a few) and propose a
practical approach on how to support muti-domain recommendations
on both the item and system level as described by [2].

To the best of our knowledge, this is the first work which ad-
dresses the question of what design decisions should be taken into
consideration when building a recommender system for a multi-
domain environment.
1http://www.mymanou.com/
2https://www.triprebel.com/
3http://uscn.me/rr220
4http://www.clef-newsreel.org/

42

Figure 2: Proposed system architecture of a multi-domain recommendation environment showing how the various modules work
together. Each module is a standalone HTTP server, which is aware of the location (i.e., URL) of its communicating partners. In case
of an item level multi-domain scenario, the same data storage is shared between the domains and customization via recommender
profiles provides the domain-specific algorithm configuration.

2 A MULTI-DOMAIN RECOMMENDATION
APPROACH

In this section, we categorize and propose guidelines to extend the
notation of a multi-domain recommender system. We base our
guidelines on our previous work [5, 6, 12], which we have already
applied in live settings in various domains (e.g., e-commerce, hotels,
conference or news as shown in Figure 1).

Thus, we propose four issues that should be addressed when
providing multi-domain recommendation, i.e., (i) service isolation,
(ii) data heterogeneity, (iii) recommender customization, and (iv)
fault tolerance. While we focus on item and system level domain
notations, our findings can be adapted for both the attribute and
type level by means of additional recommender customization (e.g.,
filtering by the item category).

2.1 Service Isolation
When supporting multi-domain recommendations on the system
level, effective hardware utilization is crucial. Actually, as each
domain has different requirements with respect to the request load,
the hardware utilization rate can be improved by sharing the same
hardware resources across multiple domains. Additionally, in such
a scenario, performance isolation is crucial. Specifically, a high
request load in combination with possible performance-intensive
operations needed for one domain should not impact the performance
in another domain. For example, news recommender systems usually
have a requirement of providing session-based recommendations
within 100 milliseconds and need to cope with challenging load
peaks during morning hours and the lunch break at working days
[13]. Thus, in cases where the request load is too large for a particular
domain, it should be possible to dynamically scale the system and
handle such performance intensive load peeks.

Correspondingly, we propose to separate a recommender system’s
logic into several microservices by adopting the Microservices ar-
chitecture design pattern5. An example of such an architecture is
shown in Figure 2. Here, five different modules take care of (i) data
handling, (ii) calculating recommendations, (iii) balancing incom-
ing recommendation requests, (iv) domain-specific customization,
and (v) evaluating recommendations. To support horizontal scaling
and to coordinate all deployed modules, as well as the correspond-
ing system level domain assignments, we use Apache ZooKeeper6.
This overall approach can be extended with virtualization and con-
tainer technologies such as Docker7 or LXC8. These lightweight re-
source containers provide features such as portability, more efficient
scheduling and resource management, as well as less virtualization
overhead, which are beneficial when implementing a multi-domain
recommender on the system level.

2.2 Heterogeneous Data
As the amount of data is doubled approximately every 40 months
[8], most recommender systems migrate from traditional databases
to distributed systems that can scale more easily and handle massive
streams of heterogeneous data. As such, a multi-domain recomm-
ender system needs to handle a diverse set of data (e.g., ratings,
views, likes, check-ins, etc.), while at the same time enabling an
easy integration of new types by modifying the underlying schema.

In our case, we leverage the Apache Solr search engine and found
its schema-less mode9 to be a great fit to support multi-domain
recommendations on an item level, as it allows dynamic schema
construction by indexing data without the need to edit it manually.

5http://microservices.io/patterns/microservices.html
6http://zookeeper.apache.org/
7http://www.docker.com
8https://linuxcontainers.org/
9https://cwiki.apache.org/confluence/display/solr/Schemaless+Mode

43

{
”id”: ”e12c4fb−ba85−46d5−896d−af65d1f3b48c”,
”item”: ”5a2bc423−15dc−47d3−8a8c−f543dc267a7c”,
”users listened”: [3907, 57017]
”users listened count”: 2
”domain”: ”LastFM”

},
{

”id”: ”8fe89bab−9631−4e87−81a0−a8dd3ffba774c”,
”user”: ”23861”,
”item”: 4105,
”rating”: 1.0
”domain”: ”MovieLens”

}

Listing 1: Example of different schema strategies to
store data in the same place for item level multi-domain
recommendations.

For example, as shown in Listing 1, we could easily derive different
data structures to store and generate recommendations in the corre-
sponding music and movie domain. Moreover, we found that the
capability for horizontal scaling (i.e., creating shards and replicas) is
extremely important when integrating new domains on an item-level
(see Figure 2) as such a strategy easily increases the amount of data
that needs to be stored and processed.

2.3 Customizing Recommendation Approaches
An important aspect of a multi-domain recommender system is cus-
tomization. Typically, different application domains have different
domain-specific data features, which means that, for example, a
music recommender could solely use implicit user interactions (e.g.,
listened songs), whereas an e-commerce recommender could use
explicit ones (e.g., ratings). On top of that, one would also need
to separately determine and setup the correct algorithmic param-
eters for each domain. For example, in case of the Collaborative
Filtering algorithm, the similarity function (e.g., Cosine or Jaccard
similarity) and the neighbourhood size need to be determined for
each domain. For other domains, one may need to setup custom
filtering criteria (e.g., recommend items that are suited for minors or
are part of a specific category). Thus, a multi-domain recommenda-
tion approach should be aware of the underlying data structures and
domain-specific parameters.

As such, we propose to outsource the domain-specific algorithm
setup into so-called recommender profiles. In our applications, we
defined a customizer module (see Figure 2), which enables to set
domain-specific algorithm configurations and to transfer it to mod-
ules utilized in a specific domain environment. This way, we can
manage domain-specific configurations and dynamically integrate
additional domains. An example of such recommender profiles for
the music domain is given in Listings 2, 3 and 4.

Here, we define a configuration by a unique reference id, a ref-
erence to the algorithm implementation (e.g., class name) and the
specific domain-relevant parameters. In case a recommender profile
is created or updated for a particular domain at runtime, the changes
need to be propagated throughout the whole system to every domain-
dependant module. As such, each module from the same domain
will be informed about the changes and the updated profile will be
used as soon as a new recommendation request is received.

id: ktl mp lastfm
reference for a MP implementation
algorithm: MostPopularGeneric

algorithm specific parameters
parameters:

item−level domain?
domain: lastFM
on what do I calculate the popularity ?
count fields : [users listened count]
user action fields : [users listened]

Listing 2: A MostPopular recommender profile for the LastFM
domain.

id: ktl ub cf lastfm
reference for a user−based−CF implementation
algorithm: GenericUBCF

algorithm specific parameters
parameters:

item−level domain?
domain: lastFM

How to calculate user similarity ?
similarity function : OVERLAP # JACCARD, COSINE, etc.
neighbourhood size: 40
user action fields : [users listened]

Listing 3: A Collaborative Filtering recommender profile for
the LastFM domain.

id: ktl hybrid cs lastfm
reference for a hybrid implementation
algorithm: CrossSourceHybrid

algorithm specific parameters
parameters:

item−level domain given by combining profiles
profile ids : [ktl mp lastfm , ktl ub cf lastfm]
recommender weights: [0.1, 0.9]

Listing 4: A Cross-Source Hybrid recommender profile for the
LastFM domain.

2.4 Fault Tolerance
Deploying multiple modules in a distributed manner increases the
probability of unexpected behaviour (e.g., hardware shutdown, I/O
problems, software bugs, etc.). As we have proposed to use mi-
croservices, it is not necessary to cope with central node failures as
it is the case with a master-slave architecture. In case a module fails,
ZooKeeper, or any other orchestration service like Eureka or Consul,
should remove the faulty module from its list of “live nodes” and no
further requests will be redirected to it.

Thus, the module will not necessarily cause any major problems
as long as there is another module of the same type available. When
experiencing a high request load, it should be possible to deploy and
register an additional module to ZooKeeper on the fly. To further
improve the reliability of the system, multiple ZooKeeper instances
can be used in a cluster in order to overcome the outage of single
instances. In such a way, the runtime performance can be guaranteed
for both item and system level multi-domain recommendations.

44

3 DOMAIN EXPERIMENTS
In order to demonstrate the application of our guidelines for pro-
viding recommendations in multiple domains, we performed sev-
eral experiments on well-known datasets used in recommender sys-
tems research, (i.e., LastFM10, Foursquare11 and MovieLens20M12).
The LastFM dataset consists of 359,348 users, 268,736 artists and
17,559,530 implicit user interactions that denote the listening rela-
tionship between users and artists. Foursquare provides 2,809,581
ratings on a 5-star scale for different venues (i.e., restaurants) and
contains 2,153,471 users as well as 1,143,092 venues in general.
The MovieLens20M dataset has 138,493 users, 27,032 movies as
well as 19,999,603 movie reviews on a 5-star rating scale with a step
size of 0.5 (i.e., a 10-star scale).

We focused on providing recommendations for cold-start users
and as such, we removed all users that interacted with more than 20
items. Next, we split the remaining data in two different sets (i.e.,
training and test sets) using a method similar to the one described
in [9]. Thus, for each user, we withheld 10 items that were used
for testing and the rest was used for training. This has resulted
in an evaluation set of 2,409 users for LastFM, 41,628 users for
FourSquare and 4,486 users for the MovieLens20M dataset. On
these datasets, we evaluated a simple MostPopular (MP) approach
(e.g., Listing 2), a user-based Collaborative Filtering (CF) approach
(e.g., Listing 3) as well as a hybrid combination [1] of both (e.g.,
Listing 4). Additionally, we evaluated different neighborhood sizes
N for the CF approach in order to optimize the results. For reasons
of simplicity, we used a naive item overlap metric to measure the
similarity between users (i.e., OV (ut ,uc) = |∆(ut) ∩ ∆(uc) |, where
∆(u) corresponds to the set of items some user u has interacted with
in the past). However, as shown in Listing 3 this is a domain-specific
parameter that could be easily adapted.

The results of our evaluation are shown in Table 1 by means of the
nDCG@10 and User Coverage (UC) metrics. The aim of this simple
experiment was to show how different parameter setups can impact
the performance in different domains. As shown, the neighbourhood
size is one example of a parameter that needs to be optimized for a
specific domain. By choosing the best parameter combination for
the hybrid approach, we can provide more robust recommendations
for all users in each domain.

4 CONCLUSION
In this work, we presented our approach on providing recommen-
dations in a multi-domain environment. Specifically, we introduced
the concept of recommender profiles in order to customize existing
algorithms with domain-specific configuration. Apart from that, we
provided guidelines with respect to service isolation, heterogeneous
data and fault tolerance. Finally, we provided customization exam-
ples as well as evaluation results for the domains of (i) LastFM, (ii)
FourSquare, and (iii) MovieLens. We believe that our findings and
proposed guidelines are of use for developers and researchers of
recommender systems to tailor and develop recommendations for
multi-domain and distributed environments.

10http://mtg.upf.edu/node/1671
11https://archive.org/details/201309 foursquare dataset umn
12https://grouplens.org/datasets/movielens/20m/

Approach nDCG@10 UC

L
as

tF
M

MP .0180 100%

C
F

N = 20 .1113

93.70%
N = 30 .1129
N = 40 .1135
N = 50 .1120
N = 60 .1112

Hybrid .1005 100%

Fo
ur

sq
ua

re

MP .0256 100%

C
F

N = 20 .0364

49.58%
N = 30 .0403
N = 40 .0426
N = 50 .0440
N = 60 .0452

Hybrid .0339 100%

M
ov

ie
L

en
s

MP .0658 100%

C
F

N = 20 .0910

100%
N = 30 .0945
N = 40 .0981
N = 50 .0965
N = 60 .0984

Hybrid .0999 100%

Table 1: Evaluation results of our multi-domain experiment.

For future work, we plan to perform a more elaborate study using
the proposed recommender profiles to study differences in domain-
specific configurations (e.g., does a semantic relationship impact
the choice of domain-specific parameters like the similarity metric
or different filtering criteria?). Moreover, we plan to investigate
datasets with textual contents in order to further explore how hybrid
weightings may impact the performance in a specific domain with
respect of not only accuracy but also diversity.

Acknowledgment. This work was funded by the Horizon 2020
project MoreGrasp (643955).

REFERENCES
[1] S. Bostandjiev, J. O’Donovan, and T. Höllerer. Tasteweights: a visual interactive

hybrid recommender system. In Proc., RecSys ’12, pages 35–42. ACM, 2012.
[2] I. Cantador, I. Fernández-Tobı́as, S. Berkovsky, and P. Cremonesi. Cross-domain

recommender systems. In Recommender Systems Handbook. Springer, 2015.
[3] A. M. Elkahky, Y. Song, and X. He. A multi-view deep learning approach for

cross domain user modeling in recommendation systems. In Proc. WWW’15.
[4] S. Gao, H. Luo, D. Chen, S. Li, P. Gallinari, and J. Guo. Cross-domain recom-

mendation via cluster-level latent factor model. In Proc. of ECML-PKDD’13.
[5] E. Lacic, D. Kowald, and C. Trattner. Socrecm: A scalable social recommender

engine for online marketplaces. In Proc. of the ACM Hypertext 2014.
[6] E. Lacic, M. Traub, D. Kowald, and E. Lex. Scar: Towards a real-time recomm-

ender framework following the microservices architecture. In Proc. of LSRS’15.
[7] B. Loni, Y. Shi, M. Larson, and A. Hanjalic. Cross-domain collaborative filtering

with factorization machines. In ECIR, pages 656–661. Springer, 2014.
[8] A. McAfee and E. Brynjolfsson. Big Data: The management revolution. Harvard

Business Review, 90(10):60–68, 2012.
[9] D. Parra-Santander and P. Brusilovsky. Improving collaborative filtering in social

tagging systems for the recommendation of scientific articles. In Proc. of WI-IAT
’10, pages 136–142. IEEE Computer Society.

[10] S. Sahebi and P. Brusilovsky. It takes two to tango: An exploration of domain
pairs for cross-domain collaborative filtering. In Proc. of ACM RecSys 2015.

[11] S. Sahebi and T. Walker. Content-based cross-domain recommendations using
segmented models. In CBRecSys@ RecSys, pages 57–64, 2014.

[12] M. Traub, D. Kowald, E. Lacic, P. Schoen, G. Supp, and E. Lex. Smart booking
without looking: Providing hotel recommendations in the triprebel portal. In Proc.
of i-KNOW ’15.

[13] S. Werner and A. Lommatzsch. Optimizing and evaluating stream-based news
recommendation algorithms. In CLEF (Working Notes), pages 813–824, 2014.

[14] L. Zhao, S. J. Pan, E. W. Xiang, E. Zhong, Z. Lu, and Q. Yang. Active transfer
learning for cross-system recommendation. In AAAI, 2013.

45

Towards a Scalable Social Recommender Engine for
Online Marketplaces: The Case of Apache Solr

Emanuel Lacić
Graz University of Technology

Graz, Austria
elacic@know-center.at

Dominik Kowald
Know-Center
Graz, Austria

dkowald@know-center.at
Denis Parra

Pontificia Universidad Catolica
Santiago, Chile

dparra@ing.puc.cl

Martin Kahr
BLANC-NOIR GmbH

Graz, Austria
martin.kahr@blanc-

noir.at

Christoph Trattner
Know-Center
Graz, Austria

ctrattner@know-center.at

ABSTRACT
Recent research has unveiled the importance of online social net-
works for improving the quality of recommenders in several do-
mains, what has encouraged the research community to investigate
ways to better exploit the social information for recommendations.
However, there is a lack of work that offers details of frameworks
that allow an easy integration of social data with traditional recom-
mendation algorithms in order to yield a straight-forward and scal-
able implementation of new and existing systems. Furthermore, it
is rare to find details of performance evaluations of recommender
systems such as hardware and software specifications or bench-
marking results of server loading tests.

In this paper we intend to bridge this gap by presenting the details
of a social recommender engine for online marketplaces built upon
the well-known search engine Apache Solr. We describe our archi-
tecture and also share implementation details to facilitate the re-use
of our approach by people implementing recommender systems. In
addition, we evaluate our framework from two perspectives: (a)
recommendation algorithms and data sources, and (b) system per-
formance under server stress tests. Using a dataset from the Sec-
ondLife virtual world that has both trading and social interactions,
we contribute to research in social recommenders by showing how
certain social features allow to improve recommendations in online
marketplaces. On the platform implementation side, our evaluation
results can serve as a baseline to people searching for performance
references in terms of scalability, model training and testing trade-
offs, real-time server performance and the impact of model updates
in a production system.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing; H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information filtering

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579245 .

Keywords
social recommender engine; scalability; online marketplaces; Apache
Solr

1. INTRODUCTION
Recommender systems aim at helping users to find relevant in-

formation in an overloaded information space [11]. Although there
are well known methods (Content-based [1], Collaborative Filter-
ing [16, 18], Matrix Factorization [10]) and libraries to implement,
evaluate and extend recommenders (Apache Mahout1, Graphlab2,
MyMediaLite3, among others [8]), the deployment of a real-time
recommender from scratch which considers a combination of al-
gorithms and data sources, the effect of large volumes of data and
hardware configuration, or the impact of model updates in the rec-
ommender performance remains unsolved or at least not publicly
available for the research community. In this paper, we contribute
to bridge this gap between research on recommender algorithms
and system deployment by presenting in detail our approach to im-
plement a social marketplace recommender. We describe our solu-
tion in terms of the data model that allows modularity and extensi-
bility, as well as the system architecture that relies on the Apache
Solr project to facilitate the scaling of our approach to big data.

We support our decision of using Solr on recent work that shows
the strong relation between memory-based recommendation ap-
proaches and ready-to-use text analytic techniques [3]. Since Solr
has already most of these techniques implemented, documented
and optimized by a well established open-source community, we
believe that it provides not only a good basis for a large-scale search
engine but it also provides a good foundation to implement an ef-
ficient and scalable social recommender engine for online market-
places. We appeal for Apache Solr since one might have to consider
several dimensions of the data or already existing indices based on
Apache Lucene, the kernel search engine Apache Solr is built upon.

To evaluate our implementation we consider diverse metrics –
accuracy and ranking metrics along diversity, and user coverage –
to unveil not only the performance of each recommender algorithm
isolated but also to show the importance of each single feature and
data source. In addition, a performance benchmarking experiment
was conducted to show the scalability of our approach.

1http://mahout.apache.org
2http://graphlab.org
3http://www.mymedialite.net

Figure 1: System architecture.

In detail, the paper is structured as follows: we begin by describ-
ing our system architecture and implementation details in Section
2. Section 3 describes the experimental setup we chose to evaluate
our framework, while in Section 4 we present the results in terms
of recommendation quality and also system’s performance. After
that, in Section 5, we discuss related work in the area and how it
differs from our approach. Finally, Section 6 concludes the paper
and provides an outlook to future work.

2. APPROACH
In the following sections we describe the architecture and high-

light some implementation details of our approach towards a scal-
able social recommender engine for online marketplaces. The en-
gine described below was implemented in Java as a joint effort with
the Austrian start-up company Blanc Noir4 and was designed in a
modular way based on Apache Solr as an highly efficient data pro-
cessing and storing unit.

2.1 Implementation
The overall system architecture of our framework is illustrated

in Figure 1. It consists of the following four main components:
The Recommender Engine consists of the implemented recom-

mender algorithms (e.g., Most Popular, Content-based, Collabora-
tive Filtering, etc.) that can be attached to the Recommendation
Workflow component. The algorithms can be called separately, in
a specific sequence or combined (e.g., as a hybrid approach). This
design gives our framework not only the flexibility that new algo-
rithms can be easily implemented and instantiated (see Listing 1)
but also that new recommendation workflows can be defined based
on a given use case or domain.

Moreover, the Recommender Engine component contains an Eval-
uator that can can be used to test and tune the different algorithms
(and the combinations of those) based on various evaluation met-
rics (see Sections 3.2 and 4.1).

The Solr Service Container acts as an abstraction layer for the
Solr core functionalities to encapsulate the different queries and
methods (e.g., facets or MoreLikeThis) into data-driven services
(e.g., Marketplace or social services) that can be consumed by the
recommender engine. Furthermore, this modular abstraction al-

4http://blanc-noir.at/

lows the Solr backend to be replaced by another data store or search
strategy (e.g., ElasticSearch5) if needed.

The Solr Cores contain the indexed data used to generate rec-
ommendations. Each core is described by its own Solr schema that
specifies a data structure and that can be extended easily by simply
adding new data fields to it and calling Solr’s RELOAD function.
Currently, we store four types of data structures in the Solr cores:
(1) user profiles, (2) item profiles, (3) user actions (e.g., purchases)
and (4) social interactions (e.g., comments). New Solr cores can
be added if new data structures are needed in the data model. For
adding a new Solr core, a new data schema needs to be defined and
registered in the solr.xml configuration file, which can be automat-
ically done using Solr’s CREATE function.

Another major reason for using Solr is its support for horizon-
tal scaling. Since version 4.0, full automatic index distribution and
searching across multiple machines (either shards or replicas) is
supported. Under a scenario where the maximum capacity for han-
dling queries per second is reached, horizontal scaling with addi-
tional replicas can be performed. On the other hand, with sharding
on multiple machines, Solr supports the need to store large amounts
of data distributively.

The REST API is the interface to our framework that a client
can either use to request item recommendations, based on a specific
algorithm or workflow, or to update the data model (e.g., if a user
has purchased an item) via JSON messages. These JSON messages
are fully configurable and let the client, for example, define user-
specific data filters to, e.g., request only recommendations for a
given item category.

The data updates are handled by data connectors, where each
connector is responsible for a different type of data. Currently there
are two connectors in the system, one for social data (e.g., Face-
book, G+ and Twitter streams) and the other one for marketplace
data (e.g., purchases).

Listing 1: Example of how to implement and run a new recom-
mender strategy.
// Implement the recommender strategy
public interface RecommendStrategy {

public RecommendResponse recommend(RecommendQuery q,
Integer maxResults, SolrServer SolrServer);

}
// Run the new recommender strategy
RecommendStrategy strategyToUse = new MyStrategyImpl();
Filter filter = new ContentFilter(); // optional
RecommendationService.getRecommendations("some_user",

"some_product", 10, filter, strategyToUse);

2.2 Recommender Algorithms
Currently, our framework implements four algorithms types to

recommend items (in our case products) to users. This set of al-
gorithms can easily be extended or adapted as explained in Section
2.1.

MostPopular (MP): This approach recommends for any user
the same set of items, which are weighted and ranked by purchase
frequency.

Collaborative Filtering (CF): Consists of recommending items
to a target user that have been previously favorited, consumed or
liked by similar users, the neighbors. This method is also known as
K-NN because it is usually accomplished in two steps: first, find the
K nearest neighbors based on some similarity metric, and second,
recommend items that the neighbors have liked that the target user
still has not consumed [20].

5http://www.elasticsearch.org/

In our case, we construct the neighborhood of a user based on
two types of features: marketplace features (purchases and cate-
gories), and social features (interests, groups and interactions) as
shown in Table 2. As an example: In the case of purchases (CFp),
we get all purchased items of the target user and query all users that
have also bought these items through the Solr data model in order to
recommend their purchased items to the target user. The resultant
lists of users and items are ranked and weighted using Solr’s facet
queries. The necessary queries for this process are the following:

// Find similar users based on purchased items using
Solr’s facet queries

/select?q=id:("some_product_1")+OR+id:("some_product_2")&
facet=true&facet.field=my_users_field

// Find items purchased by those similar users that are
new to the target user

/select?q=my_users_field:("user_1"^5+OR+"user_2"^3)&
fq:-id:("some_product_1")+OR+-id:("some_product_2")

Content-based Recommendations (C): Content-based recom-
mendation systems analyse item meta-data to identify other items
that could be of interest for a specific user. This can be done based
on user profile data or on the meta-data of the items that the user
has liked or purchased in the past [15]. Our implementation of
a content-based recommender is based on the second method and
uses the built-in MoreLikeThis functionality of Solr that finds sim-
ilar items for one or multiple given items by matching their con-
tent. We use two different types of meta-data features, namely
the title and the description of items (see Table 2). There are sev-
eral parameters for the MoreLikeThis function that can be set, e.g.,
the minimum document frequency (mindf), the minimum term fre-
quency (mintf), minimum word length (minwl), etc. In the cur-
rent implementation, both frequency parameters are set to 1 and the
word length to 4, which gives us a good trade-off between accuracy
and scalability. However, our implementation allows the applica-
tion developer also to set the parameters herself, if needed. New
content-based recommendation algorithms with different features
can be developed by implementing the aforementioned Recommend-
Strategy Interface. The listing below shows how a content-based
recommender can be called and customized in terms of the field
(mlt.fl) used to match items with similar content:

/select?q=id:("some_product_id")&mlt=true&
mlt.fl=description

Hybrid Recommendations (CCF): All three mentioned recom-
mender algorithms have unique strengths and weaknesses, e.g., CF
suffers from sparse data and cold start problems, while content-
based approaches suffer from item meta-data to be utilized[4]. Hy-
brid recommenders combine different algorithms to tackle this is-
sue in order to produce more robust recommendations [5]. Consid-
ering that we want to favor items recommended by more than one
method, we chose to implement the hybrid approach called Cross-
Source Hybrid defined in [4]:

Wreci =
∑

sj∈S

(Wreci,sj ·Wsj) · |Sreci | (1)

, where the combined weighting of the recommended item i,
Wreci , is given by the sum of all single weightings for each recom-
mender source Wreci,sj multiplied by the weightings of the recom-
mender sources Wsj . Furthermore, it uses the number of recom-
mender sources where i appears |Sreci | to strongly favor items that
have been identified by more than one recommender. We use this
approach to combine the different features and algorithms shown in
Table 2 where each recommender source can be weighted accord-

Marketplace (Market)
Number of users 72, 822
Number of purchases 265, 274
Mean number of purchases per user 3.64
Number of products 122, 360
Mean number of purchases per products 2.17

Online Social Network (Social)
Number of users 64, 500
Number of likes 1, 492, 028
Number of comments 347, 755
Mean number of likes per user 14.91
Mean number of comments per user 3.47
Number of groups 260, 137
Mean number of groups per user 8.91
Number of interests 88, 371
Mean number of interests per user 1.57

Table 1: Basic statistics of the SL dataset.

ing to its impact on the given data (e.g., its Mean Average Precision
value as described in Section 3.2). This hybridization approach is
just one of the many approaches of how to combine different rec-
ommender strategies as described in the aforementioned work by
Burke [5]. Hence, implementing the RecommendStrategy in-
terface can lead to other approaches also in terms of the feature
selection process, if needed (e.g., [17]).

3. EXPERIMENTAL SETUP
In the following sections we describe in detail the dataset and the

evaluation method and metrics used for our evaluation.

3.1 Dataset
In order to evaluate our social recommender architecture, we

relied on two different sources of data to predict future product
purchases (see also [25]) – online Marketplace data and an online
social network data obtained from the virtual world SecondLife6

(SL). The reason for choosing SL over other real world sources is
the lack of freely available datasets that combine both social net-
work with marketplace data from the same set of users. The overall
statistics of whole dataset can be found in Table 1.

Similar to eBay, every seller in the SL marketplace7 owns her
own sub-page – called the seller’s store – where all items offered
are presented to the general public. As with other trading plat-
forms such as Amazon, sellers in the SL Marketplace have the
possibility to apply meta-data information such as price, title, or
description to their products. Customers in turn are able to pro-
vide reviews or ratings to products. In order to crawl all stores
and corresponding meta-data information as well as interactions
from the SL marketplace, we exploited the fact that every store
has a unique URI built from the URL pattern http://marketplace.
secondlife.com/stores/STORE_ID, where STORE_ID is an incre-
mental integer starting at 1. With this exploit at hand, we were
able to download 72,822 complete user profiles with correspond-
ing 265,274 purchases from the stores.

The online social network MySecondLife8 was introduced by
Linden Labs, in July 2011. It can be compared to Facebook regard-
ing postings and check-ins but aims only at residents of the vir-
tual world. Hence, users can interact with each other by sharing
text messages, and commenting or liking (= loving) these mes-
6https://secondlife.com/
7https://marketplace.secondlife.com/
8https://my.secondlife.com/

Set Name Alg. Feature nDCG MRR MAP F1 D UC

M
ar

ke
t CCFm CFp CF purchases .0812 (.0305) .1310 (.0492) .0628 (.0236) .0442 (.0166) .4404 (.1654) 37.56%

CFc CF categories .0312 (.0145) .0202 (.0094) .0226 (.0105) .0146 (.0068) .4945 (.2298) 46.47%
Ct C title .0361 (.0168) .0250 (.0116) .0267 (.0124) .0155 (.0072) .6000 (.2789) 46.30%
Cd C description .0370 (.0172) .0260 (.0121) .0280 (.0130) .0153 (.0071) .5991 (.2785) 46.61%

So
ci

al

CFs CFi CF interests .0018 (.0003) .0012 (.0002) .0012 (.0002) .0006 (.0001) .3814 (.0630) 16.52%
CFg CF groups .0257 (.0129) .0205 (.0103) .0215 (.0108) .0128 (.0064) .3816 (.1913) 50.13%
CFl CF likes .0120 (.0010) .0084 (.0007) .0096 (.0008) .0084 (.0007) .3269 (.0273) 8.35%
CFco CF comments .0112 (.0008) .0084 (.0006) .0096 (.0007) .0084 (.0006) .3147 (.0225) 7.15%
CFin CF interactions .1670 (.0192) .1174 (.0135) .1417 (.0163) .1626 (.0187) .3235 (.0372) 11.50%

Table 2: Results of the performance experiment for each recommendation approach with corresponding features (normalized to the actual
UC in the row). Values in brackets represent the results normalized to 100% UC.

sages. A user pro- file can be accessed through a unique URL,
https://my.secondlife.com/en/USER_ID, where USER_ID depicts
the user’s name. The necessary names were extracted from the SL
Marketplace dataset. In order to gather the whole network we also
extracted all interaction partners recursively until no new user could
be found. All over, 1,839,783 interactions (likes, comments) were
downloaded for 64,500 user profiles.

3.2 Evaluation Method and Metrics
To evaluate the performance of our recommendation methods in

terms of accuracy, ranking, diversity and coverage, we performed a
number of off-line experiments. Therefore, we split the SL dataset
in two different sets (training and test set) using a method similar to
the described in [14], i.e. for each user we withheld 10 purchased
items (= products) from the training set and added them to the test
set to be predicted. Since we did not use a p-core pruning tech-
nique to prevent a biased evaluation as suggested in related work
[7], there are also users with less than 10 relevant items. For these
users, we considered half of their purchased items for training and
the other half for testing. With that method at hand we are able to
simulate cold-start users for whom there is no item in the training
set and the only relevant item is used in the test set.

For the evaluation metrics we used a diverse set of well-established
measures in recommender systems. In particular, we report F1-
score (F1), Mean Reciprocal Rank (MRR), Mean Average Preci-
sion (MAP), Normalized Cumulative Discounted Gain (nDCG),
User Coverage (UC) [13], and Diversity (D) [21]. All performance
metrics are reported for 10 recommended items (k=10).

To assess the performance of our recommender framework in
terms of execution time and scalability we conducted two evalu-
ations. In the first one, we compared the runtime of train and test
datasets using different approaches and data sources. In the second,
we compared different stress tests within three different scenarios.
In scenario (i), we report the mean response time (in seconds) ac-
cording to an increasing number of requests, in scenario (ii), we
report the mean response time with 10% new randomly generated
data updates (i.e., purchases) during the recommendation process
and in (iii) we report the mean time needed to persist data on the
disc for a different number of updates. The experiments have been
executed on an IBM System x3550 server with two 2.0 GHz six-
core Intel Xeon E5-2620 processors, a 1TB ServeRAID M1115
SCSI Disk and 128 GB of RAM using one Apache Solr 4.3.1. in-
stance and Ubuntu 12.04.2.

4. RESULTS
In this section we present the results of our experiments in re-

spect to the recommender performance and the scalability of our
framework.

4.1 Algorithmic Performance
The evaluation of the performance of the recommender algo-

rithms and data sources has been conducted in two steps, first we
compared the different approaches and features on their own (see
Table 2) and then we compared the combinations of those (see Ta-
ble 4). The results for the different algorithms are calculated related
to their user coverage and so are based only on the users where
they were able to calculate recommendations as suggested in re-
lated work [9, 2]. Furthermore, also the values based on all users
in the datasets are shown in parenthesis.

Table 2 shows that the best results for the accuracy metrics (F1,
MRR, MAP and nDCG) are reached by CFin followed by CFp,
the CF approaches based on social interactions and purchases. How-
ever, the results also reveal that CFin only provides a small user
coverage (UC) value, where CFp performs much better and CFg

(CF based on groups) performs best. The best diversity (D) val-
ues are reached by the two content-based approaches based on title
and description (Ct and Cd). Another thing that comes apparent
is, that all shown approaches clearly outperform CFi (CF based
on interests). Although the user’s interest seems conceptually a
good metric to assess user similarity, in the SL social network it
is defined by free-written keywords and phrases of the user, which
would require additional validation or processing steps in order to
exploit it as an efficient source of similarity.

This pattern of results also shows that the different algorithms
and features have their unique strengths and weaknesses and that
a hybrid combination of those should increase the overall recom-
mender quality in terms of accuracy, diversity and user coverage
[5]. Table 4 proofs this assumption and shows the combination of
the marketplace-based approaches (CCFm = CFp + CFc + Ct +
Cd), the combination of the social based approaches (CFs = CFi +
CFg + CFl + CFco + CFin) and the combination of both together
with MP (All = CCFm + CFs + CFs) to also address the issue
of cold-start users. It can be seen that our hybrid approach not only
outperforms the other approaches on all metrics but also provides a
UC of 100% and so it can provide recommendations for all users
in the datasets.

4.2 Framework Scalability
The recommender scalability has been evaluated in two ways,

first we compared the runtime of the different approaches and fea-
tures, as well as the hybrid combinations of those, and second we
compared the mean response time of the algorithms in form of a
stress test with an increasing number of requests in three scenarios.

The results of the runtime comparison are shown in Table 3. The
table reveals the mean test time (Test) that is needed to calculate
recommendations for a user and the overall time (|Test+ Train|)
that is needed to process all the users from the test set together
with the training time (711 seconds) for building the data model

Type CFr CFc Cn Cd CFi CFg CFl CFc CFin MP CCFm CFs All

Test 0.020 0.097 0.029 0.094 0.024 0.023 0.011 0.013 0.021 0.016 0.194 0.024 0.197
|Test+ Train| 2,167 7,775 2,823 7,556 2,459 2,386 1,513 1,658 2,240 1,876 14,838 2,459 15,057

Table 3: Results of the runtime experiment (in seconds) for each single recommendation approach and feature together with the hybrid
approaches and MP as a baseline.

in Solr (i.e., indexing the data). In general these results reveal that
Solr is capable of providing real-time recommendations for users as
the maximum mean test time is only 0.197 seconds for our hybrid
approach.

Figure 2 shows the results of the stress test with an increasing
number of requests in three scenarios, first without data updates
during the recommendation process, the second one is similar but
includes a 10% rate of data updates (i.e., randomly generated pur-
chases), and the third scenario shows the time needed to update
data. It can be seen in the first plot (without data updates) that the
mean response time follows a near linear progress for our combined
hybrid approach which clearly shows the scalability of Apache Solr
and our framework. Most surprisingly this is also the case in the
second plot that also takes data updates during the recommendation
time into account and so shows the capability of Solr in maintain-
ing its data index in near real-time. The third plot shows that Solr is
also designed to handle a high number of update requests as there is
a much sharper increase in the mean update time for a small number
of update requests than for a high number.

This shows that our framework based on Solr already contains
algorithms that not only provide a good trade-off between recom-
mendation accuracy, diversity and user coverage, but also provide
and calculate recommendations in real-time and at scale. Further-
more, there are additional ways to optimize Apache Solr (e.g., soft
commits, using an SSD disk, ...) to even better tackle the perfor-
mance of committing new or existing data.

5. RELATED WORK
There are already multiple frameworks and approaches out there

that focus on scalable recommendation mechanisms. Most of these
approaches are based on Collaborative Filtering techniques to pre-
dict the user’s ratings for items, such as movies or products, based
on the user’s preferences in the past. However, the computational
complexity of these calculations is typically very high, especially
in the case of real-time streams.

To tackle this issue, previous work focused on distributed and
scalable data processing frameworks such as Apache Hadoop or
Mahout based on the map/reduce paradigm (e.g., [26] or [23]). In
contrast to our framework based on Apache Solr, these approaches
lack the mechanisms that enable near real-time updates of the data
model (data indexing) in case of new user interactions (e.g., a user
purchased an item) and updates of the data schema in case of new
data sources that have to be plugged in (e.g., data from HBase ta-
bles). Furthermore, it is not trivial to handle social- and content-
based data with these framework, whereas this functionality comes
directly out-of-the-box with Solr (e.g., with the MoreLikeThis func-
tion) together with powerful full text search functionalities. An
alternative method to improve Collaborative Filtering is based on
Matrix Factorization as for example proposed by Diaz-Aviles et
al. [6]. However, in this work the authors focus on the near real-
time processing of Twitter streams for topic recommendations and
not on item recommendations in social online marketplaces as it is
done with our framework.

Other approaches use database systems in order to "query" the
recommendations from a data model or to simply cache the already
calculated recommendations. One example for a database-driven

Measure MP CCFm CFs All
nDCG .0078 .0678 (.0316) .0182 (.0103) .0387
MRR .0054 .0420 (.0196) .0126 (.0071) .0249
MAP .0054 .0485 (.0226) .0133 (.0075) .0278
F1 .0032 .0354 (.0165) .0115 (.0065) .0188
D .3801 .4877 (.2274) .3770 (.2129) .4276
UC 100% 46.63% 56.47% 100%

Table 4: Results of the performance experiment for the hybrid ap-
proaches together with MP as a baseline (normalized to the actual
UC in the row). Values in brackets represent the results normalized
to 100% UC.

online recommender framework is the RecDB project by Sarwat et
al. [19] which is built on the basis of a PostgreSQL database with
an extended SQL statement set. The authors show that RecDB can
provide near real-time recommendations for movies, restaurants
and research papers. Although these approaches perform fairly
good, it has been shown that relational database management sys-
tems are insufficient for full text searches, that are the basis for
content-based recommendations, where information retrieval soft-
ware like Solr greatly speed up the response time of the requested
queries [24].

To date, there is only few research available that focus on the
usage of search engines and information retrieval systems to im-
plement recommendation services. In [22] a method is presented
to implement a k-nearest neighbor-based recommendation system
on top of full text search engines (MySQL and SphinxSearch) that
provides linear scalability relative to the data size. Another work in
this context is a recent contribution by Parra et al. [12] who imple-
mented a recommender system for scientific talks based on Apache
Solr. Although the latter mentioned contribution provides insights
on how to implement a near real-time recommender system based
on Apache Solr, they lack of extensive explanations and evaluations
of how such an approach performs in a big data scenario.

6. CONCLUSIONS
In this paper we have presented the implementation details and

evaluation of an online social marketplace recommender with a fo-
cus on two kind of readers: researchers and professionals in the
area of recommender systems. On the research side, we provided
results that highlight the importance of social features (interactions
in the form of likes and comments) in order to improve the accu-
racy, diversity and coverage of product recommendations. From the
side of professionals, we provided a description of our framework
based on Apache Solr with detailed results in terms of performance
and scalability in order to serve as a baseline for people interested
in implementing a recommender system, information rarely found
in current literature. Our framework evaluation considers dimen-
sions such as hardware configuration, model training and testing
trade-offs, real-time recommendation performance and the impact
of model updates over the whole system performance.

We plan different tasks to extend our current study. In terms
of algorithms, we would like to explore whether other hybridiza-
tion techniques (weighted, mixed, etc.) can provide us alternative
ways to combine methods and data sources, in order to produce

10 100 1000 10000 100000
Requests

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
Ti

m
e

(s
)

Recommendations

MP
CCFm

CFs
ALL

1 10 100 1000 10000
Updates

0

2

4

6

8

10

M
ea

n
Ti

m
e

(s
)

Data updates

Updates

10 100 1000 10000 100000
Requests

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Ti

m
e

(s
)

Recommendations with additional 10% updates

MP
CCFm

CFs
ALL

Figure 2: Scalability tests (in seconds) for 10 to 100,000 recom-
mendation requests in three different scenarios.

an improvement in the quality of our recommendations. We also
look forward to test and integrate matrix factorization techniques
and study its impact in terms of recommendation quality and sys-
tem scalability. We also intend to run user studies to make sure
that improvements in accuracy, diversity and user coverage have a
significant positive impact on user engagement and satisfaction.

Regarding the platform, our current work proofed the feasibility
of only one well-known search engine backend to be easily utilized
and extended as a collaborative and content filtering recommender
engine. Therefore it is our aim to also investigate in depth other
popular backend search solutions such as ElasticSearch to compare
it with our current implementation based on Apache Solr. In this re-
spect, we are also interested in a comparative study that investigates
the performance of several collaborative and content filtering ap-
proaches grounded on SQL, Mahout or search engines (Solr, Elas-
ticSearch). Also, we are interested in utilizing other data sources,
in depth scalability experiments through sharding, and on testing
different feature selection methods for recommender systems.

Acknowledgments: The authors would like to thank Michael
Steurer and Lukas Eberhard for crawling the SL dataset and Alan
Said and Alejandro Bellogin for value comments on the paper. This
work is supported by the Know-Center. The first and the second
author of this paper are supported by grants from the EU funded
project Learning Layers (Nr. 318209).

7. REFERENCES
[1] M. Balabanović and Y. Shoham. Fab: content-based, collaborative

recommendation. Commun. ACM, 40(3):66–72, Mar. 1997.
[2] A. Bellogín and J. Parapar. Using graph partitioning techniques for

neighbour selection in user-based collaborative filtering. In
Proceedings of the sixth ACM conference on Recommender systems,
pages 213–216. ACM, 2012.

[3] A. Bellogin, J. Wang, and P. Castells. Bridging memory-based
collaborative filtering and text retrieval. Information Retrieval,
16(6):697–724, 2013.

[4] S. Bostandjiev, J. O’Donovan, and T. Höllerer. Tasteweights: a visual
interactive hybrid recommender system. In Proceedings of the sixth
ACM conference on Recommender systems, pages 35–42. ACM,
2012.

[5] R. Burke. Hybrid recommender systems: Survey and experiments.
User modeling and user-adapted interaction, 12(4):331–370, 2002.

[6] E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and W. Nejdl.
Real-time top-n recommendation in social streams. In Proceedings of
the sixth ACM conference on Recommender systems, pages 59–66.
ACM, 2012.

[7] S. Doerfel and R. Jäschke. An analysis of tag-recommender
evaluation procedures. In Proceedings of the 7th ACM conference on
Recommender systems, pages 343–346. ACM, 2013.

[8] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme.
Mymedialite: A free recommender system library. In Proceedings of
the Fifth ACM Conference on Recommender Systems, RecSys ’11,
pages 305–308, New York, NY, USA, 2011. ACM.

[9] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl.
Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems (TOIS), 22(1):5–53, 2004.

[10] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8):30–37, 2009.

[11] S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not
enough: how accuracy metrics have hurt recommender systems. In
CHI ’06 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’06, pages 1097–1101, New York, NY, USA, 2006.
ACM.

[12] D. Parra, P. Brusilovsky, and C. Trattner. User controllability in an
hybrid talk recommender system. In Proceedings of the ACM 2014
International Conference on Intelligent User Interfaces, IUI ’14,
pages 305–308, New York, NY, USA, 2014. ACM.

[13] D. Parra and S. Sahebi. Recommender systems : Sources of
knowledge and evaluation metrics. In Advanced Techniques in Web
Intelligence-2: Web User Browsing Behaviour and Preference
Analysis, pages 149–175. Springer-Verlag, 2013.

[14] D. Parra-Santander and P. Brusilovsky. Improving collaborative
filtering in social tagging systems for the recommendation of
scientific articles. In Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2010 IEEE/WIC/ACM International
Conference on, volume 1, pages 136–142. IEEE, 2010.

[15] M. J. Pazzani and D. Billsus. Content-based recommendation
systems. In The adaptive web, pages 325–341. Springer, 2007.

[16] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl.
Grouplens: an open architecture for collaborative filtering of
netnews. In Proceedings of the 1994 ACM conference on Computer
supported cooperative work, pages 175–186. ACM, 1994.

[17] R. Ronen, N. Koenigstein, E. Ziklik, and N. Nice. Selecting
content-based features for collaborative filtering recommenders. In
Proceedings of the 7th ACM conference on Recommender systems,
pages 407–410. ACM, 2013.

[18] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of
the 10th international conference on World Wide Web, pages
285–295. ACM, 2001.

[19] M. Sarwat, J. Avery, and M. F. Mokbel. Recdb in action:
recommendation made easy in relational databases. Proceedings of
the VLDB Endowment, 6(12):1242–1245, 2013.

[20] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. Collaborative
filtering recommender systems. In The adaptive web, pages 291–324.
Springer, 2007.

[21] B. Smyth and P. McClave. Similarity vs. diversity. In D. Aha and
I. Watson, editors, Case-Based Reasoning Research and
Development, volume 2080 of Lecture Notes in Computer Science,
pages 347–361. Springer Berlin Heidelberg, 2001.

[22] J. Suchal and P. Návrat. Full Text Search Engine as Scalable
k-Nearest Neighbor Recommendation System. In M. Bramer, editor,
Artificial Intelligence in Theory and Practice III, pages 165–173.
Springer Berlin Heidelberg, 2010.

[23] S. G. Walunj and K. Sadafale. An online recommendation system for
e-commerce based on apache mahout framework. In Proceedings of
the 2013 annual conference on Computers and people research,
pages 153–158. ACM, 2013.

[24] O. Yilmazel, B. Yurekli, B. Yilmazel, and A. Arslan. Relational
Databases versus Information Retrieval Systems : A Case Study.
IADIS International Conference Applied Computing 2009, pages
1–4, 2009.

[25] Y. Zhang and M. Pennacchiotti. Predicting purchase behaviors from
social media. In Proceedings of the 22Nd International Conference
on World Wide Web, WWW ’13, pages 1521–1532, 2013.

[26] Z.-D. Zhao and M.-s. Shang. User-based collaborative-filtering
recommendation algorithms on hadoop. In Knowledge Discovery and
Data Mining, 2010. WKDD’10. Third International Conference on,
pages 478–481. IEEE, 2010.

Real-Time Recommendations in a Multi-Domain
Environment

Emanuel Lacic
KTI

Graz University of Technology
Graz, Austria

elacic@know-center.at

ABSTRACT
Recommender systems are acknowledged as an essential instru-
ment to support users in finding relevant information. However,
adapting to different domain specific data models is a challenge,
which many recommender frameworks neglect. Moreover, the ad-
vent of the big data era has posed the need for high scalability and
real-time processing of frequent data updates, and thus, has brought
new challenges for the recommender systems’ research community.
In this work, we show how different item, social and location data
features can be utilized and supported to provide real-time recom-
mendations. We further show how to process data updates online
and capture user’s real-time interest without recalculating recom-
mendations. The presented recommendation framework provides
a scalable and customizable architecture suited for providing real-
time recommendations to multiple domains. We further investigate
the impact of an increasing request load and show how the runtime
can be decreased by scaling the framework.

Keywords
scalability; real-time recommendations; Apache Solr; multi-domain;

1. MOTIVATION
In the past decade, there has been a vast amount of research in

the field of recommender systems. Most of that work focuses on
developing novel approaches [22] and improving accuracy [16].
Thus, many well known methods are available, such as Content-
Based Filtering [15], Collaborative Filtering [21] or Matrix Fac-
torization [13], all having their unique strengths and weaknesses.
These approaches are traditionally adapted and applied with the fo-
cus on a single domain model (e.g., marketplace, hotel, conference,
etc.). However, to support a diverse set of domains is becoming an
important issue for modern recommender systems [12].

In most domains, the prediction task is usually viewed as a two-
dimensional problem which one needs to solve (e.g., utilizing user-
item interactions). But nowadays it is not enough to support mul-
tiple domains on the basis of only one common data feature. With
the arrival of the big data era, recommender systems are expected

to analyze a lot of data, to support various data types and to han-
dle streams of new data (i.e., volume, variety and velocity defin-
ing the Big Data problem). In such large-scale settings, traditional
recommender systems usually analyze the data offline and update
the generated model in regular time intervals. However, in many
domains, choices made by users depend on factors which are sus-
ceptible to change anytime. Lets take a shopping mall for example,
where a user triggers frequent indoor location updates via a smart-
phone application while moving through the mall. Employing an
offline model update strategy that lasts hours or days may poten-
tially miss the current location context of the user and fail to pro-
vide the right recommendations to match user’s real-time demand.
As a consequence, being able to capture user’s real-time interests
is gaining momentum and is currently of high demand [5, 16, 4].

2. BACKGROUND
Most existing work, which focuses on real-time recommenda-

tions (e.g., Netflix [1], Microsoft [17], among others, e.g., [3, 23]),
use offline batch processing frameworks like Apache Hadoop, Ma-
hout or Spark. Other approaches use a relational database system
to provide near real-time recommendations by querying the recom-
mendations from a generated data model [19]. However, to capture
user’s real-time interest, streaming data needs to be processed on-
line, thus needing to tackle the conflicting accuracy, real-time and
big data requirements. For example, recent research from Huang
et al. [5] and Chandramouli et al. [4] goes into that direction by
utilizing a scalable Item-based Collaborative Filtering approach to
provide real-time recommendations.

But, by focusing on the common user-item interactions, addi-
tional contextual information is usually neglected. As such, the
research community has also looked into exploiting social or lo-
cation data (e.g., [2, 13]). In doing so, personalized recommenda-
tions using Matrix Factorization dominate the literature. Jamali et
al. [6] predicted ratings using a Matrix Factorization model that
incorporates social relations. Ma et al. [13] improved both Mean
Absolute Error and Root-Mean-Square Error by incorporating so-
cial information, using social regularization in two Matrix Factor-
ization models. In general, Matrix Factorization based approaches
need to be retrained, when the data changes. This tends to be time-
consuming, especially in case of frequent data updates where it fails
to capture user’s real-time demand. Furthermore, empirical studies
showed that a large number of factors are needed so that Matrix
Factorization based approaches can deal with sparse data [18].

3. APPROACH AND METHODS
In this work, we are interested in finding out to what extent dif-

ferent data features (i.e., item, social or location) can be utilized
or even be combined for real-time recommendation. To perform

16 32 64 128
Threadpool size

0

200

400

600

800

1000

Ti
m

e
[m

s]

MP
CFR
CFCL
CFLN
Hyb

(a) 1 processing node

16 32 64 128
Threadpool size

0

200

400

600

800

1000

Ti
m

e
[m

s]

MP
CFR
CFCL
CFLN
Hyb

(b) 2 processing nodes

16 32 64 128
Threadpool size

0

200

400

600

800

1000

Ti
m

e
[m

s]

MP
CFR
CFCL
CFLN
Hyb

(c) 4 processing nodes

Figure 1: Scalability experiment with five recommendation approaches (having the hybrid run the four approaches in parallel), mak-
ing 325,005 independent recommendation requests to process. The exponentially increasing request loads (simulated by threadpools
that continuously fire requests) are handled in three scenarios: (a) localy with only 1 processing node being deployed, (b) scaling the
framework with 2 distributed nodes, and (c) having 4 distributed nodes to process the incoming recommendation requests.

this task, we rely on data crawled from the virtual world of Sec-
ondLife 1 and perform an extensive evaluation in terms of nDCG
and User Coverage [7] of the different content- and network-based
data features. The main reason for choosing SecondLife data over
other sources are manifold, but mainly due to the fact that currently
there are no other datasets available that comprise extensive item,
social and location data of users at the same time. Building up on
these results, the aim is to provide a general framework which can
(1) process streaming data online while providing real-time recom-
mendations, (2) support a multi-domain environment and the cor-
responding data features, and (3) provide a scalable architecture to
cope with increasing request loads.

Recently, search engines have gained attention in the context of
recommender systems [14]. While the results are promising, they
do not provide explanations and evaluations of how such an ap-
proach would perform in a big data, nor in a real-time multi-domain
environment. As such, the aim of this work is to proof the bene-
fits of using search engines to support different data features while
providing real-time recommendations. One issue, however, is that
in this way scalability problems are only tackled on the data side of
the domain. In order to truly be able to support multiple domains,
a recommender framework is needed which can additionally (1) be
customized with domain specific models and approaches, and (2)
cope with an increasing request load a domain could experience.
Using the already mentioned SecondLife dataset, but also a much
larger Foursquare dataset [20], we simulate an increasing recom-
mendation request load which such a framework needs to handle.

4. OUTCOMES
In [7] we showed to what extent different data features (derived

from item, social and location data) can be utilized for recom-
mending items, low-level and top-level categories. In our results,
we showed that approaches which utilize social data features can
outperform the ones based on item or location features in case of
recommending items. In case of recommending categories, these
differences get substantially smaller and even change in favor to
item and location data. Moreover, our results suggests that com-
bining the data sources should result into more robust recommen-
dations, especially in cases of recommendation tasks on different
levels of specialization (i.e., categories). In a similar fashion, we
also showed in [10] that location data can especially be helpful in
tackling cold-start users which have no interaction data whatsoever.

In [8], we proofed the benefits of using the search engine Apache
Solr 2 to provide real-time recommendations. We showed that a re-

1http://secondlife.com/
2http://lucene.apache.org/solr/

commender system is able to process data updates in real-time and
immediately consider these updates (i.e., user’s real-time interest)
in the recommendation process without the need for recalculations.
In [9] we also presented the first open-source recommender frame-
work based on the Apache Solr search engine. But as previously
mentioned, we considered the scalability issues only on the data
side of a domain, and not within the framework (e.g., handling an
increased request rate). For that purpose, we recently presented
ScaR [11]. ScaR adopts the microservices architecture and was
built with the focus on providing a scalable and customizable ar-
chitecture suited for providing real-time recommendations to mul-
tiple domains. Different domains can run (and scale) the frame-
work in isolated environments. The domain specific data features
and recommendation approaches can be dynamically customized
using a dedicated microservice which synchronizes the change to
all domain-relevant nodes.

To demonstrate ScaR’s scalability performance, Figure 1 reports
a runtime experiment on the Foursquare dataset with an increas-
ing number of request loads. As described in [11], we requested
five different recommendation approaches for 65,001 users, making
it 325,005 independent recommendations requests to process. We
performed this experiment by simulating an increasing request rate
(load) to the system, having 16, 32, 64 and 128 threads simultane-
ously requesting recommendations. These experiments were then
repeated three times: first having 1 local processing node and then,
scaling it to 2 and 4 distributed nodes. As seen, the local deploy-
ment has an exponential increase in the runtime as the load grows.
Such behaviour is somewhat expected as the number of incoming
recommendation requests cause a load spike and the processing
threads consequently cause to much context switching. But, as we
deploy additional nodes, we can see a significant decrease in the
growth of the mean processing runtime when compared to the lo-
cal deployment, which is crucial in cases when a maximal runtime
needs to be guarantied.

5. PLAN AND TIMELINE
With respect to the future research workplan, the aim is to fur-

ther look into feasible strategies to balance the trade-off between
accuracy and runtime in a multi-domain environment. For a thesis
conclusion, the idea is to find out how recent the utilized history
data and the candidate recommendations need to be (i.e., by con-
sidering the exact time or a sliding window approach) in order to
even better recommend user’s real-time interest. This would not
only lead to better accuracy but also to a better performance, as
less data will need to be processed.

6. REFERENCES
[1] X. Amatriain. Big & personal: Data and models behind

netflix recommendations. In Proc. of BigMine ’13.
[2] K. Bischoff. We love rock ’n’ roll: Analyzing and predicting

friendship links in last.fm. In Proceedings of the 4th Annual
ACM Web Science Conference, WebSci ’12, pages 47–56.
ACM, 2012.

[3] S. Chan, T. Stone, K. P. Szeto, and K. H. Chan. Predictionio:
a distributed machine learning server for practical software
development. In Proc. of CIKM ’13.

[4] B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F.
Mokbel. Streamrec: A real-time recommender system. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’11, pages
1243–1246, 2011.

[5] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu. Tencentrec:
Real-time stream recommendation in practice. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages
227–238, 2015.

[6] M. Jamali and M. Ester. A matrix factorization technique
with trust propagation for recommendation in social
networks. In Proceedings of the Fourth ACM Conference on
Recommender Systems, pages 135–142. ACM, 2010.

[7] E. Lacic, D. Kowald, L. Eberhard, C. Trattner, D. Parra, and
L. Marinho. Utilizing online social network and
location-based data to recommend products and categories in
online marketplaces. In Mining, Modeling, and
Recommending ’Things’ in Social Media, pages 96–115.
Springer, 2015.

[8] E. Lacic, D. Kowald, D. Parra, M. Kahr, and C. Trattner.
Towards a scalable social recommender engine for online
marketplaces: The case of apache solr. In Proceedings of the
Companion Publication of the 23rd International Conference
on World Wide Web Companion, WWW Companion ’14,
pages 817–822. International World Wide Web Conferences
Steering Committee, 2014.

[9] E. Lacic, D. Kowald, and C. Trattner. Socrecm: A scalable
social recommender engine for online marketplaces. In
Proceedings of the 25th ACM Conference on Hypertext and
Social Media, HT ’14, pages 308–310, 2014.

[10] E. Lacic, D. Kowald, M. Traub, G. Luzhnica, J. Simon, and
E. Lex. Tackling cold-start users in recommender systems
with indoor positioning systems.

[11] E. Lacic, M. Traub, D. Kowald, and E. Lex. Scar: Towards a
real-time recommender framework following the
microservices architecture.

[12] Q. Liu and D. R. Karger. Kibitz: End-to-end
recommendation system builder. In Proceedings of the 9th
ACM Conference on Recommender Systems. ACM, 2015.

[13] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. In
Proceedings of the Fourth ACM International Conference on
Web Search and Data Mining, WSDM ’11, pages 287–296.
ACM, 2011.

[14] D. Parra, P. Brusilovsky, and C. Trattner. User controllability
in an hybrid talk recommender system. In Proceedings of the
ACM 2014 International Conference on Intelligent User
Interfaces, IUI ’14, pages 305–308. ACM, 2014.

[15] M. J. Pazzani and D. Billsus. Content-based recommendation
systems. In The adaptive web, pages 325–341. Springer,
2007.

[16] C. Rana and S. K. Jain. A study of the dynamic features of
recommender systems. Artificial Intelligence Review,
43(1):141–153, 2015.

[17] R. Ronen, N. Koenigstein, E. Ziklik, M. Sitruk, R. Yaari, and
N. Haiby-Weiss. Sage: Recommender engine as a cloud
service. In Proceedings of the 7th ACM Conference on
Recommender Systems, RecSys ’13, pages 475–476, 2013.

[18] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix
factorization using markov chain monte carlo. In
Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 880–887. ACM, 2008.

[19] M. Sarwat, J. Avery, and M. F. Mokbel. Recdb in action:
Recommendation made easy in relational databases. Proc.
VLDB Endow., 6(12):1242–1245, Aug. 2013.

[20] M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F. Mokbel.
Lars*: An efficient and scalable location-aware
recommender system. IEEE Trans. on Knowl. and Data
Eng., 26(6):1384–1399, June 2014.

[21] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. The
adaptive web. chapter Collaborative Filtering Recommender
Systems, pages 291–324. Springer-Verlag, 2007.

[22] G. Shani and A. Gunawardana. Evaluating recommendation
systems. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors, Recommender Systems Handbook, pages 257–297.
Springer US, 2011.

[23] S. G. Walunj and K. Sadafale. An online recommendation
system for e-commerce based on apache mahout framework.
In Proceedings of the 2013 annual conference on Computers
and people research, pages 153–158. ACM, 2013.

Should we Embed? A Study on the Online Performance of
Utilizing Embeddings for Real-Time Job Recommendations

Emanuel Lacic∗
Know-Center GmbH

Graz, Austria
elacic@know-center.at

Markus Reiter-Haas∗
Moshbit GmbH
Graz, Austria

markus.reiter-haas@moshbit.com

Tomislav Duricic
Graz University of Technology

Graz, Austria
tduricic@know-center.at

Valentin Slawicek
Moshbit GmbH
Graz, Austria

valentin.slawicek@moshbit.com

Elisabeth Lex
Graz University of Technology

Graz, Austria
elisabeth.lex@tugraz.at

ABSTRACT
In this work, we present the findings of an online study, where
we explore the impact of utilizing embeddings to recommend job
postings under real-time constraints. On the Austrian job platform
Studo Jobs, we evaluate two popular recommendation scenarios: (i)
providing similar jobs and, (ii) personalizing the job postings that are
shown on the homepage. Our results show that for recommending
similar jobs, we achieve the best online performance in terms of
Click-Through Rate when we employ embeddings based on the most
recent interaction. To personalize the job postings shown on a user’s
homepage, however, combining embeddings based on the frequency
and recency with which a user interacts with job postings results in
the best online performance.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Job Recommendations; Online Evaluation; Real-time; Item Embed-
dings; Frequency; Recency; BLL Equation;

ACM Reference Format:
Emanuel Lacic, Markus Reiter-Haas∗, Tomislav Duricic, Valentin Slawicek,
and Elisabeth Lex. 2019. Should we Embed? A Study on the Online Perfor-
mance of Utilizing Embeddings for Real-Time Job Recommendations. In
Thirteenth ACM Conference on Recommender Systems (RecSys ’19), Sep-
tember 16–20, 2019, Copenhagen, Denmark. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3298689.3346989

1 INTRODUCTION
Job recommender systems have become an integral part of both
academia and industry for a few decades now [24], which is also

∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’19, September 16–20, 2019, Copenhagen, Denmark
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6243-6/19/09. . . $15.00
https://doi.org/10.1145/3298689.3346989

illustrated by the fact that XING1 has organized two recent RecSys
Challenges [1, 2]. In the past, research on job recommendations has
mainly employed various Collaborative- and Content-Based Filter-
ing approaches or their hybrid combinations [3, 27] to improve the
recommendation accuracy. Recently, learning latent item represen-
tations (i.e., embeddings) for recommender systems has become a
popular technique and has shown state-of-the-art performance in
the job domain. For example, the authors of [26] use Doc2Vec [17]
to create job embeddings based on job-related content features. To
test their approach, they conduct an offline evaluation, where they
manually score the quality of similar jobs from a small subset of 100
randomly selected jobs. [23, 28] further propose an ability-aware
neural network to match the content of resumes with the content of
job requirements. Other works [5, 16, 22] define the task at hand as
an item-to-item recommendation problem and evaluate embedding
approaches also in offline studies.

However, whether a user indeed accepts a recommendation can
only be measured with either user studies or online evaluations. User
studies are to date rarely used as they require active participation of
users over a period of time [6] and online evaluations are expensive
to set up, as they need a fully functional system with a significant
userbase [7]. As a consequence, related work that reports on on-
line studies of job recommender systems is scarce. For example,
recent work [12] explored in an online study how to increase the
engagement toward underserved jobs. Besides, in the case of the
RecSys 2017 Challenge, the top-25 participating teams were allowed
to publish their solutions once per day to be rolled out on the XING
platform [2]. In line with recent research [8, 11], recommendation
approaches used in an online evaluation usually need to consider
real-time constraints [9, 25], such as having response times, which
are below 100-200 milliseconds or immediately considering data
updates in the next recommendation request.

The present work. In this work, we contribute to the sparse line of
research on evaluating job embeddings under real-time constraints
in an online setting. For this, we learn job embeddings using the
popular Doc2Vec approach. We obtain fixed-length vectors from
the job description text and investigate their impact on the online
performance of recommending job postings in real-time. Similarly,
as in our previous work [16], we further represent a user’s browsing
behavior by combining the extracted embeddings using a model

1https://www.xing.com

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Emanuel Lacic, Markus Reiter-Haas∗, Tomislav Duricic, Valentin Slawicek, and Elisabeth Lex

Test Distinct Users Reco Requests Days Approach CTR ↗ Runtime (ms) ↘

Si
m

ila
r

Jo
bs

Impact of embeddings 8,576 31,968 32
CBF 0.0194

18.04%
51

23.53%
LAST 0.0229∗ 39∗∗

Influence of frequency and recency 4,715 18,464 15
LAST 0.0249∗∗

75.35%
67∗∗

28.72%
BLL 0.0142 94

Merit of recency 3,375 11,992 15
BLLd=0.6 0.0174∗

35.94%
97

2.06%
BLLd=0.4 0.0128 95

H
om

ep
ag

e Influence of frequency and recency 9,620 26,334 25
BLL 0.0671∗

15.69%
114∗∗

13.64%
CF 0.0580 132

Combining frequency and recency 9,313 24,907 19
HYBBLL 0.0471∗∗

33.05%
172

38.37%
CF 0.0354 106∗∗

Table 1: We report the mean Click-Through Rate (CTR) and the mean Runtime of the approaches utilized in the corresponding A/B
tests. The increase↗ in accuracy and decrease↘ in runtime is reported for the best performing approach. Moreover, we use the ∗
symbol to indicate it the results are significantly better with a p-value < 0.05 and the ∗∗ for results with a p-value < 0.0005.

from human memory theory, that integrates factors of frequency and
recency of job posting interactions. To measure the real impact of
such an approach, we perform several A/B tests on the Studo Jobs
platform. That is, we compare against two popular recommendation
use-cases that we tackle under the real-time constraint: (i) providing
content-based recommendations for similar job postings to the one
currently viewed by the user and, (ii) personalizing the homepage
with job postings using collaborative filtering. Our findings suggest
that in situations when we recommend similar job postings, using
embeddings based on the most recent interaction tends to improve
the online performance. In contrast, combining embeddings based
on the frequency and recency with which a user interacts with job
postings improves the online performance when we personalize the
job postings on the homepage.

2 RECOMMENDATION STUDY
Our study is carried out in the Studo Jobs2 platform. We tackle
two distinguished recommendation scenarios, which the platform
supports. First, we recommend similar jobs. Second, we personalize
the ranked list of all possible job postings in the system to improve
engagement on the homepage of Studo.

As shown in our previous offline study in [16], learning embed-
dings on the textual description of job postings can improve both
the accuracy and diversity of content-based recommendations. In
the present work, we learn embeddings of job postings by utilizing
Doc2Vec [17], a variation of the widely popular Word2Vec [19]
approach. In order to investigate the online performance of the ex-
tracted job embeddings 3 under real-time constraints, we employ
two variants for performing content-based recommendation of job
postings, which are described in this section. For evaluation, we
measure both Click Through Rate (CTR) and runtime.

Utilizing the most recent job interaction (LAST). A natural way
of using embeddings is to apply them in a content-based manner
(e.g., [20]). That is, given a reference vector representation, the task
is to find the top-k similar vectors (i.e., job postings) using the Cosine
similarity. As described in [16], to obtain this reference vector, we
use the embedding of the last (i.e., most recent) job posting with
which the user has interacted. With this recommendation strategy,
2https://studo.co/jobs , the predecessor of the Talto career platform (https://talto.com)
3We obtain the embeddings using a Doc2Vec model that we train with a window size of
20, a learning rate of 0.025 and 10 negative samples.

we can study the online performance when we recommend jobs that
are similar to the one the user is currently viewing.

Integrating interaction frequency and recency (BLL). One issue
of the previously mentioned LAST recommendation strategy is that
it solely focuses on the factors of interaction recency. However,
related work has shown that past interaction frequency and recency
are crucial factors for personalization [13, 16]. In this respect, the
cognitive architecture ACT-R defines the Base-Level Learning (BLL)
equation, which integrates these two factors to model the information
access in human memory. Thus, to simultaneously account for both
frequency and recency factors of job posting interactions, we use the
BLL equation to model a user’s browsing behavior:

BLLu,j = ln(
n∑

i=1
(TSr ef −TSj,i)−d) (1)

where BLLu,j is the BLL value for a given user u and a given job
j, and n states the number of times u has interacted with j in the
past. Moreover, TSj,i is the timestamp (in seconds) of when u has
interacted with j for the i-th time andTSr ef is a reference timestamp
such as the time when the job recommendations are requested. The
parameter d is used to set the time-dependent decay of item exposure
in human memory and unless stated otherwise, we set it to its default
value of 0.5 (i.e., according to Anderson et al. [4]).

In this work, we use Anderson’s model of human memory the-
ory to create a reference vector representation that can be used in
a content-based manner (i.e., to find similar job postings). For that,
we first normalize the BLL values using a softmax function and
then multiply them with the vector representations assigned to the
individual job postings from a user’s browsing history. This way, we
form a weighted sum of embeddings based on how frequently and
recently the user has interacted with the particular job postings. As
shown in [16], utilizing embeddings in such a way results in a rec-
ommendation performance with a higher diversity when compared
to the previously mentioned LAST approach.

Adapting for real-time job recommendations. In practice, response
times of recommendations need to be below 100-200 milliseconds
[9, 25]. To adapt the LAST and BLL approaches for an online setting
(i.e., to provide recommendations in real-time), we further propose
to store the learned job embeddings in the form of payloads in
Apache Lucene. Payloads are a general purpose array of bytes that
are associated with a Lucene token at a particular position. Each

Should we Embed? Online Performance of Embeddings for Real-Time Job Recommendations RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

0 3 6 9 12 15 18 21 24 27 30
Day

0.01

0.02

0.03

0.04

0.05

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

CBF
LAST

CBF
LAST

20

40

60

80

100

R
un

ti
m

e
(m

s)

(a) Impact of embeddings

0 3 6 9 12
Day

0.01

0.02

0.03

0.04

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

LAST
BLL

LAST BLL
0

50

100

150

200

R
un

ti
m

e
(m

s)

(b) Influence of frequency and recency

0 3 6 9 12
Day

0.01

0.02

0.03

0.04

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

BLLd=0.4

BLLd=0.6

BLL d=
0.4

BLL d=
0.6

0

50

100

150

200

R
un

ti
m

e
(m

s)

(c) Merit of recency

Figure 1: Analysis of incorporating job embeddings to recommend similar jobs. The reported results show a daily CTR and the
distribution of the measured runtime performance.

job posting is thus annotated with multiple positions of the latent
vector dimensions. The latter positional information can be used for
fast retrieval and calculation of vector similarities (i.e., utilizing the
Cosine similarity) at runtime4. For the online study on the Studo
Jobs platform, we use Apache Solr5 to store, retrieve and calculate
the similarity of job embeddings in real-time.

Experimental setup. In our experiments, we measure the Click-
Through Rate (CTR) and the runtime performance. To obtain the
CTR, we compute the percentage of recommended job postings
with which the users have interacted. For the runtime analysis, we
measure the time it takes to generate each recommendation in mil-
liseconds. We compare two approaches at a time (i.e., conduct an
A/B test) to avoid being subject to periodical changes and other
anomalies (e.g., server load differences). For this reason, we divide
our userbase into two equal groups and assign them to one of the two
approaches that we evaluate. We further perform a chi-squared test
on the measured recommendation outcome (i.e., a user either did or
did not engage with a recommendation) and a t-test on the runtime
performance to determine if the differences in the reported results
are statistically significant. Concerning real-time constraints, all rec-
ommendation approaches in the Studo Jobs platform calculate new
recommendations for every request and filter out those job postings
that the user has already interacted with in the current session.

3 SIMILAR JOBS
When users view a particular job posting in the Studo Jobs platform,
recommendations with similar, alternative jobs are shown to them.
The location of the shown recommendations depends on the layout
of the device used. On the desktop, the recommendations appear in
the sidebar, while on a mobile device they will appear under the job
posting description. Furthermore, this type of recommendation only
suggests a short list of 3 alternative job postings and does not suffer
from a cold-start problem (i.e., users have at least one interaction).

Baseline: Content-Based Filtering (CBF). A popular method in
many systems for recommending similar items (i.e., jobs) is Content-
Based Filtering [3, 21]. This method analyses item metadata to

4An example of how to implement the retrieval of similar vectors in Elastic Search, a
search engine that is built on top of Apache Lucene can be found at the following link:
https://github.com/lior-k/fast-elasticsearch-vector-scoring.
5A search engine that, similar as Elastic Search, is built on top of Apache Lucene:
https://lucene.apache.org/solr/.

identify other items that could be of interest for a specific user. In
Studo, this is done using TF-IDF on the description text of the job
posting with which the user currently interacts. Besides being a
typical pick for recommending similar items, another reason for
using CBF is that it can easily be adapted for an online setting,
where recommendations need to be served in real-time6.

Impact of embeddings. The initial aim of this work is to investigate
if utilizing embeddings, which we learn from the textual content of
job postings, can outperform traditional content-based recommenda-
tions when used in a similar item scenario. For this, we first did a
preliminary A/B test of the LAST approach to evaluate the impact
of the embedding size. In the case of Studo, embeddings larger than
100 did not contribute to a higher CTR, but did increase the overall
runtime performance. Table 1 thus reports on all A/B tests, for which,
we use 100 as the dimension size of job embeddings.

In Figure 1a, we report the performance of the LAST approach
when compared to the CBF baseline. The CTR varies over the 32-day
testing period, but overall, using job embedding from the currently
viewed job posting leads to a significant increase of the CTR by
18.04%. Moreover, utilizing embeddings in such a way resulted in
a 23.53% lower runtime (i.e., as reported in Table 1), which is a
desirable effect when providing recommendations in real-time.

Influence of frequency and recency. Building upon the insights on
the impact of using embeddings, we evaluate the model of human
memory theory during a shorter, 15-day period. That is, we inves-
tigate if we can further enhance the recommendation performance
by using the proposed BLL equation from Section 2 to create the
reference job vector. Interestingly enough, Figure 1b clearly shows
that modeling a user’s browsing behavior in this manner did not re-
sult in better performance than the LAST approach in terms of both
CTR and runtime. As seen in Table 1, we get the highest relative
difference in CTR which did not justify the increased computational
overhead, that resulted in higher runtime performance.

Merit of recency. We hypothesize that the BLL approach did not
exhibit a better performance due to the specific recommendation
scenario where it was applied in (i.e., showing similar jobs to the
currently viewed one). This suggests that factors of recency are

6As shown in [15], we leverage the built-in functionality of the Apache Solr search
engine to recommend jobs with the most similar textual content.

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Emanuel Lacic, Markus Reiter-Haas∗, Tomislav Duricic, Valentin Slawicek, and Elisabeth Lex

0 3 6 9 12 15 18 21 24
Day

0.00

0.05

0.10

0.15

0.20

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

CF
BLL

CF
BLL

50

100

150

200

250

300

350

R
un

ti
m

e
(m

s)

(a) Influence of frequency and recency

0 3 6 9 12 15 18
Day

0.00

0.02

0.04

0.06

0.08

C
lic

k-
Th

ro
ug

h
R

at
e

(C
TR

)

CF
HYBBLL

CF

HYB BLL

0

100

200

300

400

500

R
un

ti
m

e
(m

s)

(b) Combining frequency and recency

Figure 2: Online performance of job embeddings when used to
personalize the homepage.

especially influential in this setting and as such, we perform an
additional experiment to confirm this effect.

In our previous experiment, we set the time parameter d from
the BLL equation to have the default value of 0.5. However, this
parameter changes the rate at which things will be "forgotten". Thus,
it controls the decay of the impact of consumed items at an expo-
nential rate. The question is therefore on whether a shorter memory
(i.e., higher time decay) or a long memory is better for the setting
of recommending similar job postings. For this experiment, the ex-
ponents d = 0.6 (shorter memory) and d = 0.4 (longer memory)
were compared. As seen in Figure 1c and Table 1, favoring shorter
memory (i.e., recency) when calculating the BLL equation resulted
in a significantly better CTR. Indeed, this confirms the described
effect where users expect recommendations which are similar to the
more recent browsing behavior.

4 HOMEPAGE
As in many other systems, personalization in the Studo Jobs platform
starts already on the homepage. The homepage consists of a list of
25 job postings from which the first 5 are the calculated recommen-
dations. The advantage in this setting is the seamless integration of
recommendations with the list of available jobs. Moreover, users not
only first visit the homepage when they access the Studo Jobs portal,
but also often come back to it after they stop exploring a given job
posting. Such behavior results in the homepage being responsible for
more than 80% of all recommendations that the user has interacted
with and thus suggests to be a better fit for applying the model of
human memory theory to represent the user’s browsing behavior.

Baseline: Collaborative Filtering (CF). To this day, one of the
most explored and utilized techniques for personalizing a system
in real-time is Collaborative Filtering [10, 15, 18]. The Studo Jobs
portal uses the User-Based Collaborative Filtering approach to per-
sonalize the job postings on the homepage. In that setting, a target
user will get those job postings recommended that have been previ-
ously interacted by similar users (i.e., the neighbors). As shown in
[14], to provide recommendations in real-time, the inverted-index
structure available in the Apache Solr search engine is used to find
the k-nearest neighbors using the Cosine similarity metric.

Influence of frequency and recency. As previously stated, we hy-
pothesize that by incorporating the factors of frequency and recency
from a user’s browsing behavior, we can further enhance the online
performance of recommendations on the homepage. For this, we
use the BLL equation on the extracted embeddings from the user’s

interaction history to create a reference vector representation and
recommend the top-k similar job postings. To account for cold-start
users, we utilize the most popular job postings as a fallback7.

As seen in Figure 2a and the second part of Table 1, using the
BLL equation on embeddings from the user’s job history manages
to significantly outperform the CF baseline for both, the CTR and
the runtime performance. Such results suggest that the scenario
of personalizing the homepage is indeed a setting where the user
expects the recommendations to consider both, factors of frequency
and recency of her browsing behavior.

Combining frequency and recency. Instead of replacing the CF
baseline with the BLL approach, we further explore the efficacy of
a hybrid combination which uses these two approaches in a round-
robin fashion. We assume that for the homepage, where the user
interacts most with the provided recommendations, it would make
sense to allow picking from multiple sources of relevant job postings
since such a recommendation strategy has often lead to the best
performance in offline evaluation settings (e.g., [16, 27]).

As seen in Figure 2b and the last row of Table 1, the hybrid
combination of the BLL approach and the CF baseline also per-
forms significantly better than the CF baseline concerning CTR.
The relative improvement of 33.05% for the CTR in this A/B test is
much better than in the case when we just used the BLL approach
on its own. This, however, comes with a trade-off, namely, with a
significant increase in the runtime.

5 CONCLUSION
In this work, we contributed to the sparse line of research on evaluat-
ing job embeddings under real-time constraints in an online setting.
We performed a variety of A/B tests on the Studo Jobs platform
and ran evaluations concerning CTR and runtime for two different
recommendation scenarios, namely, recommending similar jobs and
personalizing the job postings that are shown on the homepage.

We found that for the case of recommending similar jobs, using
embeddings based on the most recent interaction provides the best
online performance. In contrast, combining embeddings based on the
frequency and recency with which a user interacts with job postings
significantly improves the online performance when we personalize
the jobs on the homepage.

Limitations and Future Work. While Doc2Vec is a popular choice
for learning item embeddings, other deep learning methods such
as, e.g., Autoencoders or Convolutional Neural Networks might
also perform well for this task. Furthermore, we did not explore
the impact of using additional user or job-related metadata on the
quality of learned embeddings. We also did not study the effects of
the time-dependent decay parameter d from the model of human
memory theory to a greater extent for personalizing the jobs shown
on the homepage. As such, we aim to tackle these points as future
work. Finally, the data we used for this study is proprietary and we
currently cannot release it to the research community.

Acknowledgements. This work was supported by the FFG Data
Market Austria (DMA) project. The authors also thank the team of
the Talto career platform for supporting this research experiment.

7Such a fallback strategy is used for every recommendation approach on the homepage
of the Studo Jobs portal (including the CF baseline).

Should we Embed? Online Performance of Embeddings for Real-Time Job Recommendations RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

REFERENCES
[1] F. Abel, A. Benczúr, D. Kohlsdorf, M. Larson, and R. Pálovics. Recsys challenge

2016: Job recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems, pages 425–426. ACM, 2016.

[2] F. Abel, Y. Deldjoo, M. Elahi, and D. Kohlsdorf. Recsys challenge 2017: Offline
and online evaluation. In Proceedings of the Eleventh ACM Conference on
Recommender Systems, pages 372–373. ACM, 2017.

[3] S. T. Al-Otaibi and M. Ykhlef. A survey of job recommender systems. Interna-
tional Journal of Physical Sciences, 7(29):5127–5142, 2012.

[4] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin. An
integrated theory of the mind. Psychological review, 111(4):1036, 2004.

[5] O. Barkan and N. Koenigstein. Item2vec: neural item embedding for collaborative
filtering. In 2016 IEEE 26th International Workshop on Machine Learning for
Signal Processing (MLSP), pages 1–6. IEEE, 2016.

[6] J. Beel, M. Genzmehr, S. Langer, A. Nürnberger, and B. Gipp. A comparative
analysis of offline and online evaluations and discussion of research paper reco-
mmender system evaluation. In Proceedings of the international workshop on
reproducibility and replication in recommender systems evaluation, pages 7–14.
ACM, 2013.

[7] P. G. Campos, F. Díez, and I. Cantador. Time-aware recommender systems:
a comprehensive survey and analysis of existing evaluation protocols. User
Modeling and User-Adapted Interaction, 24(1-2):67–119, 2014.

[8] B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel. Streamrec:
a real-time recommender system. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pages 1243–1246. ACM, 2011.

[9] C. Eksombatchai, P. Jindal, J. Z. Liu, Y. Liu, R. Sharma, C. Sugnet, M. Ulrich, and
J. Leskovec. Pixie: A system for recommending 3+ billion items to 200+ million
users in real-time. In Proceedings of the 2018 World Wide Web Conference on
World Wide Web, pages 1775–1784. International World Wide Web Conferences
Steering Committee, 2018.

[10] T. George and S. Merugu. A scalable collaborative filtering framework based on
co-clustering. In Fifth IEEE International Conference on Data Mining (ICDM’05),
pages 4–pp. IEEE, 2005.

[11] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu. Tencentrec: Real-time stream rec-
ommendation in practice. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 227–238. ACM, 2015.

[12] K. Kenthapadi, B. Le, and G. Venkataraman. Personalized job recommendation
system at linkedin: Practical challenges and lessons learned. In Proceedings of
the Eleventh ACM Conference on Recommender Systems, pages 346–347. ACM,
2017.

[13] D. Kowald, S. C. Pujari, and E. Lex. Temporal effects on hashtag reuse in twitter:
A cognitive-inspired hashtag recommendation approach. In Proceedings of the
26th International Conference on World Wide Web, pages 346–347, 2017.

[14] E. Lacic, D. Kowald, and E. Lex. Neighborhood troubles: On the value of
user pre-filtering to speed up and enhance recommendations. In Proceedings

of the International Workshop on Entity Retrieval (EYRE’2018) co-located with
CIKM’18, 2018.

[15] E. Lacic, D. Kowald, D. Parra, M. Kahr, and C. Trattner. Towards a scalable
social recommender engine for online marketplaces: The case of apache solr. In
Proceedings of the 23rd International Conference on World Wide Web, pages
817–822. ACM, 2014.

[16] E. Lacic, D. Kowald, M. Reiter-Haas, V. Slawicek, and E. Lex. Beyond accuracy
optimization: On the value of item embeddings for student job recommendations.
In Proceedings of the Workshop on Multi-dimensional Information Fusion for User
Modeling and Personalization (IFUP’2018) co-located with WSDM’18, 2018.

[17] Q. Le and T. Mikolov. Distributed representations of sentences and documents.
In International conference on machine learning (ICML’14), pages 1188–1196,
2014.

[18] G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-to-item
collaborative filtering. IEEE Internet computing, (1):76–80, 2003.

[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013.

[20] C. Musto, G. Semeraro, M. de Gemmis, and P. Lops. Learning word embeddings
from wikipedia for content-based recommender systems. In European Conference
on Information Retrieval, pages 729–734. Springer, 2016.

[21] M. J. Pazzani and D. Billsus. Content-based recommendation systems. In The
adaptive web, pages 325–341. Springer, 2007.

[22] V.-T. Phi, L. Chen, and Y. Hirate. Distributed representation based recommender
systems in e-commerce. In DEIM Forum, 2016.

[23] C. Qin, H. Zhu, T. Xu, C. Zhu, L. Jiang, E. Chen, and H. Xiong. Enhancing
person-job fit for talent recruitment: An ability-aware neural network approach.
In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, pages 25–34. ACM, 2018.

[24] R. Rafter, K. Bradley, and B. Smyth. Personalised retrieval for online recruitment
services. In The BCS/IRSG 22nd Annual Colloquium on Information Retrieval
(IRSG 2000), Cambridge, UK, 5-7 April, 2000, 2000.

[25] A. Said, J. Lin, A. Bellogín, and A. de Vries. A month in the life of a production
news recommender system. In Proceedings of the 2013 workshop on Living labs
for information retrieval evaluation, pages 7–10. ACM, 2013.

[26] J. Yuan, W. Shalaby, M. Korayem, D. Lin, K. AlJadda, and J. Luo. Solving cold-
start problem in large-scale recommendation engines: A deep learning approach.
In 2016 IEEE International Conference on Big Data (Big Data), pages 1901–1910.
IEEE, 2016.

[27] C. Zhang and X. Cheng. An ensemble method for job recommender systems.
In Proceedings of the Recommender Systems Challenge, RecSys Challenge ’16,
pages 2:1–2:4. ACM, 2016.

[28] C. Zhu, H. Zhu, H. Xiong, C. Ma, F. Xie, P. Ding, and P. Li. Person-job fit:
Adapting the right talent for the right job with joint representation learning. ACM
Transactions on Management Information Systems (TMIS), 9(3):12, 2018.

Vol.:(0123456789)

User Modeling and User-Adapted Interaction (2020) 30:617–658
https://doi.org/10.1007/s11257-020-09269-1

1 3

Using autoencoders for session‑based job
recommendations

Emanuel Lacic1 · Markus Reiter‑Haas2 · Dominik Kowald1 ·
Manoj Reddy Dareddy3 · Junghoo Cho3 · Elisabeth Lex4

Received: 15 April 2019 / Accepted in revised form: 1 June 2020 / Published online: 1 July 2020
© The Author(s) 2020

Abstract
In this work, we address the problem of providing job recommendations in an online
session setting, in which we do not have full user histories. We propose a recom-
mendation approach, which uses different autoencoder architectures to encode ses-
sions from the job domain. The inferred latent session representations are then used
in a k-nearest neighbor manner to recommend jobs within a session. We evaluate our
approach on three datasets, (1) a proprietary dataset we gathered from the Austrian
student job portal Studo Jobs, (2) a dataset released by XING after the RecSys 2017
Challenge and (3) anonymized job applications released by CareerBuilder in 2012.
Our results show that autoencoders provide relevant job recommendations as well
as maintain a high coverage and, at the same time, can outperform state-of-the-art
session-based recommendation techniques in terms of system-based and session-
based novelty.

Keywords Job recommendations · Session-based recommendation · Autoencoders ·
Session embeddings · Accuracy · Novelty

1 Introduction

People increasingly use business-oriented social networks such as LinkedIn1 or
XING2 to attract recruiters and to look for jobs (Kenthapadi et al. 2017). Users of
such networks make an effort to create personal profiles that best describe their
skills, interests, and previous work experience. Even with such carefully structured
content, it remains a non-trivial task to find relevant jobs (Abel 2015). As a conse-
quence, the field of job recommender systems has gained much traction in academia

 * Elisabeth Lex
 elisabeth.lex@tugraz.at

Extended author information available on the last page of the article

1 http://linke din.com.
2 http://xing.com.

618 E. Lacic et al.

1 3

and the industry (Lacic et al. 2019; Siting et al. 2012). The main challenge that job
recommender systems tackle is to retrieve a list of jobs for a user based on her pref-
erences or to generate a list of potential candidates for recruiters based on the job’s
requirements (Hong et al. 2013).

Besides, most online job portals offer the option to browse the available jobs
anonymously in order to attract users to the portal. As a consequence, the only data
a recommender system can exploit are anonymous user interactions with job post-
ings during a session. In other words, the problem of recommending jobs is a ses-
sion-based recommendation problem (Jannach and Ludewig 2017). That is, the aim
is to recommend the next relevant job in an anonymous session.

In our ongoing work with the Austrian start-up Studo,3 we have started to address
the problem of recommending jobs in a session-based environment. In their student
job portal Studo Jobs,4 we have observed an increasing volume of anonymous user
sessions that look for new jobs.5 For example, over the past six months, anonymous
job-related browsing has doubled from approximately 30,000 to 60,000 job interac-
tions. Therefore, in this paper, we address the problem of recommending jobs in a
session-based environment.

Recently, neural networks have gained attention in the context of session-based
recommender systems (e.g., Hidasi et al. 2015; Li et al. 2017; Lin et al. 2018; Wu
et al. 2018, 2019; Yuan et al. 2019). The idea is to extract latent information about a
user’s preferences from anonymous, short-lived sessions. For example, autoencoders
(Kramer 1991) are neural networks designed to learn meaningful representations,
i.e., embeddings, and to reduce the dimensionality of input data. Example applica-
tions are data compression (Theis et al. 2017), clustering and dimensionality reduc-
tion (Makhzani et al. 2015) as well as recommender systems, where they have been
used to find latent similarities between users and items and to predict user prefer-
ences (Sedhain et al. 2015; Strub et al. 2016).

Their ability to preserve the most relevant features, while reducing dimension-
ality, inspired our idea to explore the use of autoencoders to infer latent session
representations in the form of embeddings and to use these embeddings to gener-
ate recommendations in a k-nearest-neighbor manner. To that end, in this paper,
we introduce a recommendation approach, which employs different autoencoder
architectures, (1) a classic autoencoder (Kramer 1991), (2) a denoising autoencoder
(Vincent et al. 2008) and (3) a variational autoencoder (Jordan et al. 1999), to learn
embeddings of job browsing sessions. The inferred latent session representations
are then used in a k-nearest neighbor manner to recommend jobs within a session.
Besides, we use two types of input data to train and test our approach, i.e., interac-
tion data from sessions and content features of job postings, for which interactions
took place during a session. We assess the performance of our approach in the form

3 https ://studo .co.
4 The jobs platform in Studo, which is the predecessor of the Talto career platform (https ://talto .com)
5 We observe this trend independent from the changes in authenticated sessions, which fluctuate heavily
over the year. The cause of this trend is that both the total number of sessions and the average ratio of
anonymous sessions to authenticated sessions are growing.

619

1 3

Using autoencoders for session-based job recommendations

of offline evaluations on three datasets from the job domain: firstly, a dataset col-
lected from the Austrian online student job portal Studo Jobs; secondly, the job data-
set that was provided by XING after the RecSys Challenge 2017 (Abel et al. 2017);
and finally, a dataset from a Kaggle competition on job recommendation sponsored
by CareerBuilder. Our approach is compared to the state-of-the-art session-based
recommender approaches (Hidasi and Karatzoglou 2018; Hidasi et al. 2015; Jannach
and Ludewig 2017; Ludewig and Jannach 2018; Rendle et al. 2009) not only with
respect to accuracy but also in terms of system-based and session-based novelty as
well as coverage (Zhang et al. 2012). This is grounded in the growing awareness that
factors other than accuracy contribute to the quality of recommendations (Herlocker
et al. 2004; McNee et al. 2006). Moreover, novelty is especially an important metric
for the job domain since applying to popular jobs may decrease a user’s satisfaction
due to high competition and less chance of getting hired (see e.g., Kenthapadi et al.
2017).

Contributions and findings The main contributions of this paper and the cor-
responding findings are as follows:

– We present a recommendation approach, which uses different autoencoder archi-
tectures to encode sessions from the job domain. We use the inferred latent ses-
sion representations in a k-nearest neighbor manner to recommend jobs within a
session.

– We compare our approach to methods from recent work (Hidasi and Karatzo-
glou 2018; Hidasi et al. 2015; Jannach and Ludewig 2017; Ludewig and Jannach
2018; Rendle et al. 2009) on the state-of-the-art session-based recommendation.

– We evaluate the efficacy of our approach on three datasets: firstly, a proprietary
dataset collected from the online student job portal Studo Jobs; secondly, a pub-
licly available job dataset that was provided by XING after the RecSys Challenge
2017; and thirdly, a publicly available job dataset from the job platform Career-
Builder.

– We train and test the autoencoders on two sources of job-related data: (1) interac-
tion data from sessions and (2) content features of job postings, for which inter-
actions took place during a session. Our results show that variational autoencod-
ers provide competitive job recommendations in terms of accuracy compared to
the state-of-the-art session-based recommendation algorithms.

– We additionally evaluate all session-based job recommender approaches in terms
of the beyond-accuracy metrics with system-based and session-based novelty as
well as coverage. We find that autoencoders can produce more novel and surpris-
ing recommendations compared to the baselines and, at the same time, provide
relevant jobs for the user while maintaining a high coverage.

– We provide the implementation of our approach as well as a more detailed hyper-
parameter description in a public GitHub repository6 in order to foster reproduc-
ible research.

6 https ://githu b.com/lacic /sessi on-knn-ae.

620 E. Lacic et al.

1 3

Organization of the paper The remainder of the paper is structured as follows: In
Sect. 2, we discuss related work. Section 3 outlines our approach to employ autoen-
coders for session-based job recommendation. Section 4 describes the baseline
approaches, datasets, evaluation protocol and performance metrics. Section 5 elabo-
rates on the results of our experiments. Finally, in Sect. 6, we conclude the paper
and provide an outlook on our plans for future work.

2 Related work

At present, we identify two lines of research that are related to our work: (1) job rec-
ommender systems and (2) session-based recommender systems.

Job recommender systems Job recommender systems address a particular rec-
ommendation problem, in that a company might want to hire only a few candidates,
while classic recommender systems typically recommend items that are relevant for
a large number of users (Kenthapadi et al. 2017). There are two directions of the rec-
ommendation problem: One is to recommend jobs to a user given her user profile,
while the other is to recommend candidates for a job posting. The directions of both
problems can even be combined using a reciprocal recommender (Mine et al. 2013).

Research on recommending jobs to users has mostly focused on improving accu-
racy with methods like collaborative- and content-based filtering or hybrid combina-
tions of both (Al-Otaibi and Ykhlef 2012; Zhang and Cheng 2016). One example
of a hybrid job recommendation system that uses interaction data as well as content
data is the work of Liu et al. (2017). Here, the recommendation problem corresponds
to first searching for matching candidates for a given job and then recommending
this job to these candidates. In another job recommender system presented in Hong
et al. (2013), the authors propose to first cluster user profiles based on their charac-
teristics and then to design separate recommendation strategies for each cluster.

In 2016, XING (a career-oriented social networking site based in Europe) organ-
ized a challenge for the ACM RecSys conference to build a job recommendation
system (Abel et al. 2016) that recommends a list of job posts with which a user
might interact in the upcoming week. The winning approach (Xiao et al. 2016) used
a hierarchical learning-to-rank model to generate the recommendations, which cap-
tures semantic relevance, temporal characteristics of a user’s profile information,
the content of job postings and the complete log of user activities. The anonymized
challenge dataset has since been employed, for instance, by Mishra and Reddy
(2016), who built a gradient boosting classifier to predict if a given user will like a
particular job posting. In 2017, XING organized another recommender challenge for
the ACM RecSys conference (Abel et al. 2017). Here, the recommendation problem
was turned into a search for suitable candidates when a new job posting is added to
the system (i.e., the task constitutes a cold-start problem (Lacic et al. 2015)). The
winning approach (Volkovs et al. 2017) spent considerable effort on feature engi-
neering to train a gradient boosting algorithm, which determines the probability of
whether or not a given candidate user profile is suited for a target job posting.

In our work, we employ the most recent version of the dataset provided by XING
after the RecSys challenge 2017 to evaluate a range of approaches to provide job

621

1 3

Using autoencoders for session-based job recommendations

recommendations in anonymous sessions. Besides, in our experiments, we use a
proprietary dataset gathered from Studo Jobs, an Austrian student job portal, as well
as a publicly available dataset from the job portal CareerBuilder.

Since in our work, we focus on session-based job recommendations, in the next
paragraph, we summarize related work on session-based recommender systems.

Session-based recommender systems Most recommender systems require a user
preference history in the form of explicit or implicit user interactions. Based on the
user preference history, a user profile is created, which is the basis for approaches
such as matrix factorization (Koren et al. 2009). However, it is not always possible
to create such user profiles, e.g., to protect the privacy of users or due to inadequate
resources. As a remedy, session-based recommender systems (Hidasi et al. 2015)
have been proposed, which model a user’s actions within a session, i.e., a short
period when the user is actively interacting with the system. A simple approach
toward session-based recommendation is to recommend similar items using
item–item similarity as proposed by Sarwar et al. (2001). Hidasi and Tikk (2016)
propose a general factorization framework that models a session using the average
of the component latent item representations. Shani et al. (2005) use Markov deci-
sion processes to compute recommendations that incorporate the transition prob-
ability between items. Jannach and Ludewig (2017) use co-occurrence patterns as a
basis for session-based recommendations. They report comparable and often even a
superior performance of a heuristics-based nearest neighbor method (KNN) to gen-
erate recommendations in a session-based setting in comparison with competitive,
state-of-the-art methods based on neural architectures. Hence, in our work, we also
use two KNN-based methods, i.e., sequential session-based KNN and vector multi-
plication session-based KNN (Ludewig and Jannach 2018) as baseline algorithms
due to their good performance and scalability as reported in related works (Jannach
and Ludewig 2017; Kamehkhosh et al. 2017; Ludewig and Jannach 2018).

In general, applying neural networks in session-based recommendation systems
has gained much attention in recent years. For instance, recent work (Tuan and
Phuong 2017; Yuan et al. 2019) uses convolutional networks to produce session-
based item recommendations. Song et al. (2016) proposed a neural architecture that
combines both long-term and short-term temporal user preferences. They model
these preferences through different long short-term memory (LSTM) networks in a
stepwise manner. In this vein, Lin et al. (2018) introduce STAMP (short-term atten-
tion/memory priority) that simultaneously incorporates a user’s general interest (i.e.,
long-term memory) and current interest (i.e., short-term memory). Wu et al. (2018)
present an architecture for session-based recommendations that is based on graph
neural networks. Here, using an attention network, each session is also represented
by a session user’s global preference and their current interest. The authors of Li
et al. (2017) propose NARM (neural attentive recommendation machine), which
uses an attention mechanism in a hybrid encoder to model the sequential behavior
of a user and to extract the user’s main purpose from the current session. As the
authors show, this approach is specifically well suited to model long sessions.

Out of the different neural architectures, recurrent neural networks have
become particularly popular for the task at hand (Chatzis et al. 2017; Hidasi
et al. 2015; Smirnova and Vasile 2017). In the earlier mentioned work of Hidasi

622 E. Lacic et al.

1 3

et al. (2015), the authors showed that a recurrent neural network (RNN)-based
approach can model variable-length session data. Other related papers on sequen-
tial data either improve the original algorithm (Hidasi and Karatzoglou 2018;
Tan et al. 2016) or extend it by capturing additional information such as con-
text (Twardowski 2016) or attention (Li et al. 2017). In later work, Hidasi et al.
(2016) introduce an architecture (i.e., pRNN) that combines multiple RNNs to
model sessions via clicks as well as via features of the clicked items such as con-
tent information. Here, each RNN handles a particular feature, such as the clicked
item’s textual representation. The authors show that, given the optimal training
strategy, pRNN architectures can result in higher performance compared to fea-
ture-less session models. Due to its ability to incorporate content features of job
postings in its model in addition to interactions within sessions, in our work, we
use pRNN as a baseline approach as we also take into account content features of
job postings as well as interactions.

In our work, we employ autoencoders, a type of neural network that can reduce
the dimensionality of data (Kramer 1991), to infer latent session representations
and to generate recommendations. Specifically, we propose to employ a classic
autoencoder (Kramer 1991), a denoising autoencoder (Vincent et al. 2008) and a
variational autoencoder (Jordan et al. 1999) to model and encode sessions. In this
vein, we find that collaborative denoising autoencoders (CDAE) (Wu et al. 2016) are
related to our work. CDAE utilize a denoising autoencoder (Vincent et al. 2008) by
adding a latent factor for each user to the input. A denoising autoencoder can learn
representations that are robust to small, irrelevant changes in the input. In CDAE,
the number of parameters grows linearly with the number of users and items, which
makes it prone to overfitting (Liang et al. 2018). Also related to our work is neural
collaborative filtering (He et al. 2017), where a neural architecture, which can learn
any function from data, replaces the dot product between the latent user and item
features. However, this model has a similar issue as CDAE and, thus, grows linearly
with the number of sessions and jobs as the authors of Liang et al. (2018) describe.

Finally, with respect to evaluation, to the best of our knowledge, related work on
evaluating session-based recommender systems with beyond-accuracy metrics such
as system-based and session-based novelty, or coverage is scarce. Only in recent
work, Ludewig and Jannach (2018) evaluate session-based recommender systems
in light of coverage and popularity bias. With this work, we aim to contribute to this
sparse line of research as we evaluate all approaches in this work with respect to
system-based and session-based novelty as well as coverage, in addition to accuracy.

3 Approach

In this section, we describe our approach toward a session-based job recommender
system using autoencoders. In Sect. 3.1, we first describe how we encode sessions
with autoencoders. Then, in Sect. 3.2, we outline our method to model the input ses-
sion vectors from interactions and content features. Finally, Sect. 3.3 details how we
compute session-based job recommendations.

623

1 3

Using autoencoders for session-based job recommendations

3.1 Encoding sessions using autoencoders

Autoencoders are a type of neural network, which were popularized by Kramer
(1991) as a more effective method than principal component analysis (PCA) with
respect to describing and reducing the dimensionality of data. Autoencoders are
trained in an unsupervised manner where the network is trying to reconstruct the
input by passing the information to the output layer through a bottleneck architec-
ture. For our work, we employ three variants of autoencoder architectures to repre-
sent a session: (1) a classical autoencoder (AE), (2) a denoising autoencoder (DAE)
and (3) a variational autoencoder (VAE).

Autoencoder (AE) The simplest form of an autoencoder has only one hidden
layer (i.e., the latent layer) between the input and output (Bengio et al. 2007). The
latent layer takes the vector xs ∈ ℝ

D , which represents the session and maps it to a
latent representation zs ∈ ℝ

K using a mapping function:

where W is a D × K weight matrix, b ∈ � is an offset vector and � is usually a non-
linear activation function. Using zs , the network provides a reconstructed vector
x̂s ∈ ℝ

D , which is calculated as:

By adding one or more layers between the input and latent layer, we create an
encoder and, correspondingly, a decoder by doing the same between the latent and
output layer, hence the name autoencoder. During inference, we use the output of the
latent layer (i.e., the information bottleneck) to represent the latent session vector zs.

In our experiments, for � , we use rectified linear units (ReLU7) (Nair and Hinton
2010) activation function for all layers except the final output layer, where a sigmoid
activation function is used. Furthermore, we use a Ds − 256 − 100 − 256 − Ds net-
work architecture,8 where Ds is the dimension of the original vector representation
of the session that is encoded using job interactions with or without the correspond-
ing job content data. To train the network, we use RMSprop (Tieleman and Hinton
2012) and minimize the Kullback–Leibler divergence (Fischer and Igel 2012).

We also experimented with adding additional encoder/decoder layers as well as
increasing the layer size (e.g., layers with a size of 1000) but did not see any major
performance differences besides an increased training complexity. Both Adam and
RMSProp are two of the most popular adaptive stochastic algorithms for training
deep neural networks. In our work, we focused on RMSProp.

Denoising Autoencoder (DAE) As shown by Vincent et al. (2008), extending
autoencoders by corrupting the input can show surprising advantages. The idea of a

zs = h(xs) = �(WTxs + b)

x̂s = 𝜎(W �zs + b�)

7 For an input x, relu(x) = max(0, x).
8 We also tested higher values for the dimension of the latent layer (e.g., layers with a size of 1000) as
well as adding additional encoder/decoder layers, but did not find enough accuracy improvement that
would justify the additional computation burden when calculating session similarities in real time.

624 E. Lacic et al.

1 3

denoising autoencoder is to learn representations that are robust to small, irrelevant
changes in the input. Corrupting the input can be done on either one or multiple lay-
ers before we calculate the final output.

In our DAE model, we get a corrupted input x̂ using the commonly employed
additive Gaussian noise on the input layer with a probability of 0.5. Like earlier,
we use the same Ds − 256 − 100 − 256 − Ds architecture, ReLU and sigmoid activa-
tion functions, the RMSprop optimization algorithm and the Kullback-Leibler diver-
gence as loss function.

Variational Autoencoder (VAE) Another approach to extract the latent repre-
sentation zs is to use variational inference (Jordan et al. 1999). For that, we approx-
imate the intractable posterior distribution p(zs|xs) with a simpler variational dis-
tribution q�(zs|xs) , for which we assume an approximate Gaussian form with an
approximately diagonal covariance:

where � and �2 is the encoded output given the input vector representation xs of
a session. To be more precise, we use additional neural networks as probabilistic
encoders and decoders. Most commonly, this is done using a multilayered percep-
tron (MLP). For the above-mentioned q�(zs|xs) , we calculate:

where {W1,W2,W3, b1, b2, b3} are weights and biases of the MLP and are part of
variational parameters � . While decoding, we sample the latent representation and
produce a probability distribution �(zs) over all features from the input session vec-
tor xs . As we deal with implicit data, to calculate the probabilities, we let p�(xs|zs)
be a multivariate Bernoulli (Kingma and Welling 2013), whose probabilities in the
MLP we calculate as:

where f� is an element-wise nonlinear activation function (i.e., in our case a sig-
moid) and � = {W4,W5, b4, b5} are weights and biases of the MLP.

The generative model parameters � are learned jointly with variational parameters
� by optimizing the marginal likelihood of the data. The objective is thus to mini-
mize the distance between the variational lower bound L(�,�, x) and a certain prior
(Kingma and Welling 2013; Liang et al. 2018), which in case of VAEs is the Kull-
back–Leibler divergence (Fischer and Igel 2012) of q�(zs|xs) and p(zs|xs) . As we
are sampling zs from q� in the variational lower bound, in order to learn the model,
we need to apply the reparametrization trick (Kingma and Welling 2013; Rezende
et al. 2014) by sampling � ∼ N(0, IK) (also seen later in Fig. 2) and reparametrize

log q�(zs|xs) = logN(zs;�, �
2I)

� = W2 h + b2

log �2 = W3 h + b3

h = relu (W1 xs + b1)

log p(xs|zs) =
D∑

i=1

xsi log yi + (1 − xsi) ⋅ log(1 − ysi)

ys = f�(W5 relu (W4 zs + b4) + b5)

625

1 3

Using autoencoders for session-based job recommendations

zs = 𝜇𝜙(xs) + 𝜖 ⊙ 𝜎𝜙(xs) . Hence, the gradient with respect to � can be back-propa-
gated through the sampled zs.

In our experiments, we utilize the described VAE model with a similar archi-
tecture as previously mentioned: Ds − 256 − 100 − 256 − Ds (i.e., the encoder and
decoder MLPs are symmetrical). Furthermore, for all three autoencoder architec-
tures, we experiment on additionally incorporating the self-attention mechanism
(e.g., as Lin et al. 2017; Parikh et al. 2016; Vaswani et al. 2017 do in their work) on
the encoder layer.

3.2 Modeling session vectors

The input for any of the three autoencoder variants is a binary-encoded representa-
tion of the session xs . As shown in Fig. 1, we propose the following two variants of
how to train the autoencoder models that will be used to infer the latent representa-
tion zs.

Variant 1: Modeling from interactions We construct xs by only using the job
interaction data of a given session. In the remaining paper, we denote the three
autoencoder models, which only use job interaction data as AEInt , DAEInt and
VAEInt . We create session vectors of size ns , where ns is the number of jobs in the

F1

AEInt

Session Interactions

J4 J3J1

J1 1

1 0 0

J1 J2 Jn

1 1

Session Representation

0 1

J4 0 1 1

J3 1 0 0

1 0 0 0 1 1 1 0 1

Jr (= J3) Jr-1 (= J4) Jr-2 (= J1)

0 0 0

Jr

Jr-1

Jr-2

F2 Encoded Job Features

r = index of the last job
 interaction in the session

m = maximal number of job
 interactions to consider

AEComb

Jr-mJ3 J4

n = number of jobs
 in the dataset

Session Representation

Fig. 1 Modeling session vectors. The input of the utilized autoencoder is a session representation, which
can be binary-encoded using job interactions with or without the corresponding job content data. For
example, a standard autoencoder that only considers interaction data (denoted as AE

Int
) will expect a

binary encoded vector with a dimension that equals the number of jobs in the underlying dataset. To
combine this with job content data (denoted as AE

Comb
), we use the most recent m job interactions within

the session and generate a binary encoding of the job content features in descending order

626 E. Lacic et al.

1 3

underlying dataset. Each job is then assigned an index in this vector. The interac-
tions on the corresponding job indices are set to 1, while we set the rest to 0. One
possible drawback of this approach is that due to the ephemeral nature of job post-
ings, we would need to frequently retrain the utilized model in order to consider new
jobs coming to the system (Matuszyk et al. 2015). Moreover, this will also impact
the size of the input vector xs , which will constantly be increasing with every new
job.9

Variant 2: Modeling from interactions and content In order to mitigate the
need to retrain the autoencoder models frequently, we also propose to leverage the
content of job postings, with which anonymous users have interacted during a ses-
sion (i.e., combine interaction data with content data). Given a set of content fea-
tures F = {f1,… , fl} , we first convert each job interaction in a session to a binary
vector of size nj =

∑l

i=1
dist(fi) , where dist(fi) gives the number of distinct values of

a job feature fi . Each feature value is then assigned an index in this vector, and the
existing feature values are set to 1, while the rest are 0. To create the session vector
xs , starting from the most recent job interaction, we concatenate the last m converted
job interactions. In case the number of job interactions is less than m, xs is right-pad-
ded with 0-filled job vectors, which results in xs being of size nj × m . We denote the
three autoencoder models that use the content features of job interactions as AEComb ,
DAEComb and VAEComb . Note also that we introduce the parameter m to end up with
an input vector xs that has a fixed length and a model that is less sensitive to new job
postings that are added to the system.

3.3 Computing session‑based job recommendations

We formulate the recommendation problem as follows: Given a target session st , in
which there was an interaction with at least one job ji from the set of available jobs
J = {j1,… , jn} , the task is to predict the next jobs this user will likely interact with.
In order to compute recommendations, as shown in Fig. 2, we first extract the output
zs for the sessions that are available in the training set. During prediction time, for
a given target session st , we proceed to infer its latent representation first to find the
top-k similar past sessions. In order to reduce the computational burden and allow
for efficient recommendation,10 we extract a subset of all sessions, where the users
have interacted with the last job in st . Using zs , we compute the cosine similarity
between the respective target and candidate session and use the top-k similar ses-
sions to recommend jobs. Jobs are then ranked based on the following score:

sKNN(st, ji) =

n∑

i=1

sim(st, si) × 1si(ji)

10 The number of stored sessions can easily pass the million mark and cause for unnecessary calcula-
tions once a recommender system is running for a longer period.

9 This effect can, however, be damped by removing obsolete job postings, but would still result in a con-
stantly changing input dimension.

627

1 3

Using autoencoders for session-based job recommendations

where 1si(ji) is 1 if the candidate session si contains the job ji and 0 otherwise (as in
Bonnin and Jannach 2015; Jannach and Ludewig 2017).

4 Experimental setup

In this section, we present the baseline approaches and the datasets we used for this
study. We outline the evaluation protocol and the performance measures, which we
employed to compare all approaches. In our evaluation, we contribute to the limited
amount of related work (e.g., like Ludewig and Jannach 2018) as we evaluate all
approaches both concerning accuracy and beyond-accuracy measures (i.e., system-
based and session-based novelty as well as coverage).

4.1 Baseline approaches

We utilize well-known baselines and compare our approach to the following state-
of-the-art methods (Ludewig and Jannach 2018) for session-based recommendation:

Ji

Ji

Ji

Ji

s1

s2

sr

sr+1

sn-1

sn

d1 d2 dn-1 dn

d

d1 d2 dn-1 dn

d1 d2
dn-
1

dn

d1 d2 dn-1 dn

d1 d2 dn-1 dn

d1 d2 dn-1 dn

1. SESSION FILTERING

d1 d2 dn-1 dn

3. CALCULATE SESSION SIMILARITY

4.
 F

IN
D

 T
O

P
-N

S

E
S

S
IO

N
S

0. INIT SESSION EMBEDDINGS

2. INFER SESSION EMBEDDING

C
A

N
D

ID
A

T
E

 S
E

S
S

IO
N

S

T
R

A
IN

 D
A

TAF
ILT

E
R

E
D

 S
E

S
S

IO
N

S
A

E
D

A
E

V
A

E
 σµ

x

εz

x

θ

x

ε

z

x

θ

x

z

x

θ

φ

φ

φ

φ

Fig. 2 Computing session-based job recommendations. Using the trained autoencoders, we infer latent
representation for (1) sessions in the training data and (2) the current target session for which we recom-
mend jobs. Jobs from the top-k similar candidate sessions (filtered by the currently interacted job post-
ing) are recommended to the target session

628 E. Lacic et al.

1 3

POP A simple and yet often strong baseline for session-based recommenda-
tion is the popularity-based approach. As in Hidasi et al. (2015), the results are
always the same top-k popular items from the training dataset.

iKNN The item-KNN approach recommends jobs that are similar to the actual
job that is interacted with during the session. As in Hidasi et al. (2015), we use
the cosine similarity and include regularization to avoid coincidental high simi-
larities between rarely visited jobs.

BPR-MF One of the commonly used matrix factorization methods for implicit
feedback is Bayesian personalized ranking (Rendle et al. 2009). As in Hidasi et al.
(2015), we use the average of job feature vectors of the jobs that had occurred
in the current session as the user feature vector to apply it directly to generate
a session-based recommendation. That is, similarities of the feature vectors are
averaged between a candidate job and the jobs of the current session.

Bayes Following the Bayesian rule, we calculate the conditional probability of
a job xi being clicked based on the previous r interactions of the current session s:

This approach is, from a computational perspective, inexpensive to calculate and run
in an online setting.

GRU4Rec Recently, Hidasi et al. (2015) showed that recurrent neural net-
works are excellent models for data generated in anonymous sessions. GRU4Rec
combines gated recurrent units with a session-parallel mini-batch training pro-
cess, and it incorporates a ranking-based loss function. For our study, we use
the most recent improvement in GRU4Rec (Hidasi and Karatzoglou 2018). This
GRU4Rec version employs a new class of loss functions tied together with an
improved sampling strategy.

pRNN Another recent advancement of Hidasi et al. (2016) shows how to
incorporate item features into the representation of neural networks. They pro-
pose several different architectures based on GRU units and ways to train them.
We use a parallel architecture with simultaneous training for our experiments.
This approach utilizes both a one-hot encoding of the current item interaction and
an item representation as inputs for the subnets. The trained model uses the TOP1
loss function as defined in Hidasi et al. (2015).

sKNN Recent research has shown that computationally simple nearest-neigh-
bor methods can be effective for session-based recommendation Jannach and
Ludewig (2017). The session-based KNN approach first determines the k most
similar past sessions in the training data. Sessions are encoded as binary vectors
of the item space, and a set of k nearest sessions is retrieved for the current ses-
sion using cosine similarity. The final job score is calculated by aggregating the
session similarity over all the sessions that contain the candidate job.

V-sKNN Vector multiplication session-based KNN (V-sKNN) is a variant of
sKNN that considers the order of the elements in a session. The idea here is to
create a real-valued vector by putting more weight on recent interactions, where

P(xi�xs1 ,… , xsr) =

∏r

j=1
P(xsj �xi) × P(xi)
∏r

j=1
P(xsj)

629

1 3

Using autoencoders for session-based job recommendations

only the very last element of the session obtains a value of “1” (Ludewig and Jan-
nach 2018). For this, a linear decay function is used that depends on the position
of an element within the session.

S-sKNN Sequential session-based KNN (S-sKNN) puts more weight on ele-
ments that appear later in the session in a similar way as V-sKNN (Ludewig and
Jannach 2018). This effect is, however, achieved by giving more weight to neigh-
boring sessions which contain recent items of the current session.

4.2 Datasets

For this study, we employ three different datasets from the job domain. The first
dataset, Studo, is a proprietary dataset collected from the online platform Studo
Jobs, a job-seeking service for university students. The second dataset RecSys17
is the latest version of the data provided by XING after the RecSys Challenge

Table 1 Statistics of the datasets Studo, RecSys Challenge 2017 (i.e., RecSys17) and CareerBuilder12

While Studo has more sessions and job interactions, the RecSys Challenge 2017 dataset has more job
postings that can be recommended. CareerBuilder12 is the largest dataset, but also has the highest spar-
sity

Dataset # Interactions # Sessions # Jobs Sparsity (%)

Studo 191,259 26,785 1111 99.36
RecSys17 55,380 16,322 15,686 99.98
CareerBuilder12 661,910 120,147 197,590 99.99

CLICK MARK APPLY

Interaction Type

0

10,000

20,000

30,000

40,000

50,000

#
In

te
ra

ct
io

n
s

RecSys 2017

VIEW APPLY DETAILS SHARE

Interaction Type

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

#
In

te
ra

ct
io

n
s

Studo

APPLY

Interaction Type

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

#
In

te
ra

ct
io

n
s

Career Builder 2012

5 10 15 20 25 30 35 40

Interactions in session

100

101

102

103

104

#
S
es

si
on

s

RecSys 2017

0 20 40 60 80 100

Interactions in session

100

101

102

103

104

#
S
es

si
on

s

Studo

0 25 50 75 100 125 150 175

Interactions in session

100

101

102

103

104

105

#
S
es

si
on

s

Career Builder 2012

Fig. 3 Number of interactions based on the interaction type (top) and the distribution of session sizes
(bottom) is shown for the RecSys Challenge 2017 (left) and Studo (middle) and CareerBuilder12 data-
sets. Overall, the distribution of interaction types is similar between the datasets where the click, view
and apply interactions mostly dominate

630 E. Lacic et al.

1 3

2017 (Abel et al. 2017). The third dataset CareerBuilder12 is from an open Kag-
gle competition, called Job Recommendation Challenge,11 provided by the online
employment Web site CareerBuilder. The statistics of all three datasets are given
in Table 1. As seen, all datasets have a high sparsity: 99.36% for Studo, 99.98%
for RecSys17 and 99.99% for CareerBuilder12. Studo contains a higher num-
ber of sessions when compared to RecSys17 but has a much smaller number of
available jobs that can we can recommend. CareerBuilder12 is the largest dataset
of the three, but only contains job applications as interactions. In the next para-
graphs, we describe the three datasets in more detail.

Studo The dataset contains job interactions from anonymous user sessions from a
period of three months between September 2018 and December 2018. All job inter-
actions in this dataset have an anonymous session id assigned to them. As seen in
the top row of Fig. 3, the Studo dataset contains four interaction types, i.e., job view,
show company details, apply and share job. As shown at the bottom row of Fig. 3,
the log histogram of session sizes follows a skewed pattern, which means that most
sessions have a small number of interactions. In particular, every session has 6.98
interactions on average and a median of 5 interactions.

Concerning content features reported in Table 2, in the Studo dataset, we utilize
seven content features of job postings. The Job State determines 1 out of 9 Austrian
federal states. Job Country indicates whether the job is in Austria or some other
country. The Job Begins Now feature specifies whether the job candidate can start
immediately working on the advertised position. We relate this feature to the Is
Payed feature from the RecSys17 dataset as companies typically pay for job post-
ings to be shown if they urgently need candidates. Studo’s Job State is similar to the
Region feature from RecSys17, the same holds true for Studo’s Employment Type,

Table 2 Binary-encoded content features of our three datasets

For Studo, concatenating all job features results in a job vector with a dimensionality of 60. For the Rec-
Sys17 dataset, this results in a job vector with a dimension of 79. For the CareerBuilder12 dataset, this
results in 115 dimensionality vectors. We also put the same annotation on content features, which have a
similar meaning in both datasets. The Job Discipline feature is the only one in Studo, which represents a
combination of the Discipline Id and Industry Id features from the RecSys17 dataset

Studo RecSys17 CareerBuilder12

Content feature Encoding Content feature Encoding Content feature Encoding

Job state† 10 Region† 17 State† 55
Job country‡ 1 Country‡ 4 Requirement topic 20
Job begins now 1 Is payed 2 Title topic 20
Job effort 1 Career level 6 Description topic 20
Job language 1 Industry Id†† 23
Job discipline†† 40 Discipline Id†† 22

Employment type‡‡ 6 Employment‡‡ 5

11 https ://www.kaggl e.com/c/job-recom menda tion.

631

1 3

Using autoencoders for session-based job recommendations

which can be related to the Employment feature from RecSys17. Job Effort indicates
whether the concrete working hours are specified; otherwise, the default working
hours are assumed. The Job Language feature specifies whether the job requires the
usage of either the German or English language. Furthermore, a job posting can also
be described by a subset of 40 different Job Discipline labels and a subset of 6 dif-
ferent Employment Type labels. The Job Discipline feature can actually be regarded
as a combination of the Discipline Id and Industry Id features from the RecSys17
dataset. As described in Sect. 3.2, we use all content features from the Studo dataset
to create a binary-encoded job vector with a dimensionality of 60. Finally, we have
77.7% uniquely encoded job vectors, which consist, on average, of 11.8% assigned
feature values.

RecSys17 The dataset contains six different interaction types that were performed
on the job items. For this study, we only keep the click, bookmark and apply inter-
actions (as seen on the top of Fig. 3). We remove the delete recommendation and
recruiter interest interactions as these are irrelevant in our setting. Moreover, we dis-
card impression interactions as they are created when XING shows a job to a user.
As stated by Bianchi et al. (2017), an impression does not imply that the user has
interacted with the job. The dataset consists of interactions from a period of three
months (from November 6, 2016, until February 3, 2017). We manually partition the
interaction data of the RecSys dataset into sessions using a 30-minute idle threshold
(as in Quadrana et al. 2017). The resulting sessions have, on average, 3.62 interac-
tions per session and a median of 3 interactions.

Also, the RecSys17 dataset contains content features about the job postings, such
as career level or type of employment. From this set, we select seven features as con-
tent-based input for our approaches and discarded the numeric IDs of title and tags,
since those would lead to very big encodings. The chosen features closely resemble
the features that are present in the Studo dataset. More specifically, from RecSys17,
we use the following features, as shown in Table 2: Region, Employment, Is Payed,
Discipline Id, Career Level, Industry Id and Country. The Region content feature is
a categorical feature with 17 possible value, like the Employment feature with 5 val-
ues. The Is Payed content feature indicates if the posting is a paid for by a company.
The Discipline Id is a categorical feature with 22 different values that represent
disciplines such as consulting or human resources. The categorical feature Career
Level can take 7 values, Industry Id represents industries such as finance, and Coun-
try denotes the code of the country in which the job is offered.12 Overall, we end up
with a job vector that has dimensionality of 79. We find that only 33.58% of the job
vectors are unique and have on average 8.86% assigned feature values.

CareerBuilder12 The dataset contains job applications from a period of almost
three months. No other interaction types are present in this dataset. The sessions
are created via a time-based split of 30 min. Due to the nature of job applications,
most sessions contain very few interactions. The interactions in the dataset happen
over 13 weeks. Thus, similar to the other two datasets, it happens over almost three

12 https ://www.recsy schal lenge .com/2017.

632 E. Lacic et al.

1 3

months, i.e., from April 2012 to June 2012. The sessions have, on average, 5.64 job
applications per session, whereas the median is 4 applications per session.

Regarding content features, the CareerBuilder12 dataset contains textual descrip-
tions of the jobs as well as categorical data for the location. From the content data,
the 55 different states are used in the form of one-hot encodings. Since in our work,
we utilize categorical job features as input to our models, we additionally inferred
categorical topics for each of the 3 textual features (i.e., title, description and
requirements). That is, for every textual feature, we trained a separate latent Dir-
ichlet allocation (LDA) model from which we extracted 20 distinct topics. This pro-
cedure resulted in every job posting having a requirement, title and description topic
assigned to them. Thus, the resulting feature vector of a job posting is of size 115.
For this largest dataset, 13.46% of vectors are unique, and those vectors have only
2.58% assigned feature values.

4.3 Evaluation protocol

We employ a time-based split on all three datasets to create train and test sets. For
this, we put the sessions from the last 14 days (i.e., 2 weeks) in the test set of the
respective dataset and use the remaining sessions for training. For each set, we
keep only sessions with a minimal number of 3 interactions.13 Like (Quadrana et al.
2017), we filter items in the test set that do not belong to the train set as this ena-
bles a better comparison with model-based approaches (e.g., RNNs), which can only
recommend items that have been used to train the model. In Studo, this procedure
results in 23, 738 sessions to train and 3047 to test the approaches. For the RecSys17
dataset, this results in 12, 712 sessions for training and 3610 sessions for testing. In

Original Session

J2 J3J1 J4

R2R1 . . . R20 J3J1 J4

Input Expected

J3J1 J4

Recommended

J2

J2

J3J1 J2

R2R1 . . . R20

R2R1 . . . R20 J4

R2R1 . . . R20J1

Input Expected

J3J1

Recommended

J2

J2

J3J1 J2

R2R1 . . . R20

R2R1 . . . R20 J4

Testing for the Remaining Jobs in a Session Testing for the Next Job in a Session

Fig. 4 Our evaluation protocol for one exemplary session consisting of four jobs. We distinguish between
(1) comparing the recommended jobs with the remainder of the interactions in a session (left) and (2)
comparing the recommended jobs with the next job interaction (right)

13 We chose 3 for the minimum amount of interaction as it is the lowest median of interactions in a ses-
sion across all three datasets, as reported in Sect. 4.2.

633

1 3

Using autoencoders for session-based job recommendations

the case of the much larger CarrerBuilder12 dataset, the train set contains 108, 783
sessions, whereas the test set has 11, 364 sessions.

Training and testing the algorithms We first train all approaches on the respec-
tive training data. In order to evaluate the performance of the utilized session-based
recommendation algorithms, for each session in the test data, we iteratively subsam-
ple its interactions. That is, after each session interaction, we recommend 20 jobs
for the current target session state and compare the predictions with the remaining
interactions. We start this procedure for every session after the first interaction and
end before the last one. In this setting, as shown in Fig. 4, we explore two evaluation
cases: comparing the recommended jobs with (1) the remainder of the interactions
in the session and (2) with the next job interaction (i.e., next item prediction; same
as in Hidasi and Karatzoglou 2018; Hidasi et al. 2015).

For our proposed method, that uses content features in combination with user
interactions to encode the input for the autoencoders (i.e., as described in Sect. 3.2),
we use the top 25 recent job interactions to infer the session representation. That is,
we set the parameter m = 25 as more than 98% of all sessions in Studo, and almost
all sessions in the RecSys17 dataset do not have more than 25 job interactions (i.e.,
as shown in Fig. 3).

Hyperparameter optimization To optimize hyperparameters, we further split
the train sets by the same time-based split to generate validation sets. Thus, we use
the last 2 weeks of the train set as a separate validation set and the remaining ses-
sions to train our models. The resulting split for the Studo dataset is 19, 245 sessions
in the validation train set and 3273 sessions in the validation test set. For the Rec-
Sys17 dataset, we have 8001 sessions in the validation train set and 2046 sessions in
the validation test set. In case of CareerBuilder12, the validation train set contains
51, 717 sessions and the validation test set 10, 574 sessions. Note that some ses-
sions did no longer have the minimal number of 3 interactions and were filtered out.
As a consequence, the combination of the validation train and validation test set is
smaller than the original train set. The results of the hyperparameter optimization
step are described in Sect. 5.3.

4.4 Evaluation metrics

We quantify the recommendation performance of each approach concerning accu-
racy and beyond-accuracy metrics like system-based and session-based novelty.
More specifically, in our study, we use the following performance measures:

Normalized Discounted Cumulative Gain (nDCG) nDCG is a ranking-depend-
ent metric that measures how many jobs are predicted correctly. Also, it takes the
position of the jobs in the recommended list into account (Parra and Sahebi 2013). It
is calculated by dividing the DCG of the session’s recommendations with the ideal
DCG value, which is the highest possible DCG value that can be achieved if all
the relevant jobs would be recommended in the correct order. The nDCG metric is
based on the Discounted Cumulative Gain (DCG@k), which is given by Parra and
Sahebi (2013):

634 E. Lacic et al.

1 3

where rel(i) is a function that returns 1 if the recommended job at position i in the
recommended list is relevant. nDCG@k is calculated as DCG@k divided by the
ideal DCG value iDCG@k, which is the highest possible DCG value that can be
achieved if all the relevant jobs would be recommended in the correct order. Over all
the sessions, it is given by:

Mean reciprocal rank (MRR) MRR is another metric for measuring the accuracy
of recommendations and is given as the average of the reciprocal ranks of the first
relevant job in the list of recommended jobs, i.e., 1 for the first position, 1

2
 for the

second position, 1
3
 for the third position and so on. This means that a high MRR is

achieved if relevant jobs occur at the beginning of the recommended jobs list (Voor-
hees 1999). Formally, it is given by Aggarwal (2016):

Here, Hs is the history of the current session s and rank(Hj,Rk) is the position of the
first relevant job Hj in the recommended job list Rk.

System-based novelty (EPC) System-based novelty denotes the ability of
a recommender to introduce sessions to job postings that have not been (fre-
quently) experienced before in the system. A recommendation that is accurate but
not novel will include items that the session user enjoys, but (probably) already
knows. Optimizing system-based novelty has been shown to have a positive, trust-
building impact on user satisfaction (Pu et al. 2011). Moreover, system-based
novelty is also an important metric for the job domain since applying to popular
jobs may decrease a user’s satisfaction due to high competition and less chance
of getting hired (see, e.g., Kenthapadi et al. 2017). In our experiments, we meas-
ure the system-based novelty using the expected popularity complement (EPC)
metric introduced by Vargas and Castells (2011). In contrast to solely popularity-
based metrics (e.g., Zhou et al. 2010), EPC also accounts for the recommendation
rank and the relevance for the current session. Thus, the system-based novelty
novsystem(Rk|s) for the recommendation list Rk of length k for session s is given by:

Here, disc(i) is a discount factor to weight the recommendation rank i [i.e.,
disc(i) = 1∕log2(i + 1)] and p(rel|Ri, s) is 1 if the recommended job Ri is relevant for
session s or 0 otherwise (i.e., only jobs that are in the current session history are taken

DCG@k =

k∑

i=1

2rel(i) − 1

log(1 + i)

nDCG@k =
1

|S|
∑

s∈S

(
DCG@k

iDCG@k

)

(1)MRR@k =
1

|S|
∑

s∈S

1

|Hs|
∑

Hj∈Hs

1

rank(Hj,Rk)

EPC@k =
1

|S|
∑

s∈S

1

|Rk|
∑

Ri∈Rk

disc(i)p(rel|Ri, s)(1 − p(seen|Ri))

635

1 3

Using autoencoders for session-based job recommendations

into account). Finally, p(seen|Ri) defines the probability that a recommended job Ri
was already seen in the system, i.e., p(seen|Ri) = log2(popRi

+ 1)∕log2(popMAX + 1).
Session-based novelty (EPD) In contrast to system-based novelty, session-based

novelty incorporates the semantic content of jobs and represents how surprising
or unexpected the recommendations are for a specific session history (Zhang et al.
2012). Given a distance function d(Hi,Hj) that represents the dissimilarity between
two jobs Hi and Hj , the session-based novelty is given as the average dissimilarity
of all job pairs in the list of recommended jobs Rk and jobs in the current session
history Hs (Zhou et al. 2010). In our experiments, we use the cosine similarity to
measure the dissimilarity of two job postings using a raw job vector, which contains
1 if a session interacted with it and 0 otherwise. Again, we use the definition by
Vargas and Castells (2011) that takes the recommendation rank as well as the rel-
evance for the current session into account. Hence, we measure the session-based
novelty novsession(Rk|s) for the recommendation list Rk of length k for session s by the
expected profile distance (EPD) metric:

Here, Hs is the current history of a session s and disc(i) as well as p(rel|Ri, s) are
defined as for the EPC metric for measuring the system-based novelty.

Coverage With coverage (Adomavicius and Kwon 2012; Ludewig and Jannach
2018), we assess how many jobs a recommender approach can cover with its predic-
tions. As such, we additionally report the job coverage of each evaluated algorithm.
We define the coverage as the ratio between the jobs that have been recommended

EPD@k =
1

|S|
∑

s∈S

1

|Rk||Hs|
∑

Ri∈Rk

∑

Hj∈Hs

disc(i)p(rel|Ri, s)d(Ri,Hj)

(a) Studo (b) RecSys17

(c) CareerBuilder12

Fig. 5 The figures show the influence of the neighborhood size k for picking top-k similar sessions when
comparing the three autoencoder variations on both interaction data and combined data. We find that the
recommendation accuracy converges when k is picked to be around 60 or more

636 E. Lacic et al.

1 3

and jobs that would be available for recommendation. Here, we make a distinction
between coverage types and report the job coverage (1) on the full dataset, i.e., how
many of all available jobs can we recommend, and (2) on the test dataset, i.e., how
many of the jobs can we recommend that we expect to be interacted with during a
session.

5 Results

In this section, we present our experimental results. We first compare the perfor-
mance of the respective models when used in a k-nearest neighbor manner and then
analyze the embedding space of the best-performing autoencoder model. After that,
we show the best hyperparameter configurations used for the baseline approaches
and then discuss the performance of our approach compared to these baselines.

5.1 Comparing the recommendation performances of autoencoders

We compare the recommendation performance of all three variants of autoencoders,
i.e., AE, DAE, VAE, trained on interactions as well as on content. This results in
six autoencoder variants in total. We train all autoencoder models for a maximum
of 50 epochs or until the error on the validation test set converges. We made addi-
tional experiments and incorporated the self-attention mechanism on the encoder
layer (e.g., as in Lin et al. 2017; Parikh et al. 2016; Vaswani et al. 2017). We did not
find any major improvements, so we do not report the results of these 6 additional
autoencoder models.

Figure 5 shows the results of the autoencoder comparison in terms of nDCG@20.
We compare the results across different values for the neighborhood size k, rang-
ing from 10 to 100. We find that VAEInt , which only uses interactions to encode the
input vector, outperforms all other approaches on the Studo and RecSys17 datasets.
When combining interaction data with content features (i.e., AEComb , DAEComb and
VAEComb), VAEComb performs the best on the Studo dataset and slightly worse than
DAEComb on the RecSys17 dataset. For the CareerBuilder12 dataset, all approaches
except the VAEInt approach have a similar performance. Such accuracy performance
for VAEInt suggests that having a much larger item space can be problematic for
the generative autoencoder variant. As the variational autoencoder outperforms the
other approaches in the majority of the configurations, in the next step, we com-
pare it to the baseline methods. Furthermore, we find that for all autoencoders, accu-
racy converges after k = 60 . Thus, in Sect. 5.4, we report the results of VAEInt and
VAEComb using top-60 similar sessions for recommendation.

5.2 Embedding analysis

To better understand the autoencoder models’ actual effectiveness, we employ the
t-SNE algorithm (Maaten and Hinton 2008) to visualize the embedding spaces.
The t-SNE method enables us to visualize high-dimensional data. It reduces the

637

1 3

Using autoencoders for session-based job recommendations

dimensionality of the latent session representations and lets us explore embeddings
in a 2D space. In t-SNE plots, similar items are modeled by neighboring points with
high probability. In our case, we expect similar sessions to form clusters of neigh-
boring points in the 2D space.

Figures 6 and 7 show the variational autoencoder models as t-SNE plots for
all three datasets, i.e., VAEInt trained on interactions and VAEComb trained on
interactions combined with job content (see “Appendix B” for a more detailed
embedding analysis). In the case of the smallest dataset Studo, when we train
the autoencoder only on interactions, more clusters are produced with sessions
of different sizes close to each other (e.g., Fig. 6a). If the variational autoencod-
ers are additionally trained on the job content, we can observe rainbow-colored
shapes that are based on session length (e.g., as shown in Fig. 7a, b). In the
larger CareerBuilder12 dataset, we end up with several sub-clusters that exhibit

VAEInt

(a) Studo (b) RecSys17

(c) CareerBuilder12

Fig. 6 The plots show t-SNE embeddings for latent session representations produced with the VAE
autoencoder models trained on all three datasets using only interaction data. The colors of the sessions
reflect the session length, where the same red color is used for sessions with 20 or more interactions

638 E. Lacic et al.

1 3

this rainbow pattern. In other words, when we encode the input with content fea-
tures, sessions of similar length tend to cluster. We attribute this to sessions of
similar length having similar patterns of input vectors (e.g., many right-padded
zeros for short sessions).

Next, we investigate the difference in recommendation accuracy between
VAEInt and VAEComb in light of the clustering patterns. The results suggest that
when sessions cluster by similar size in the 2D space, as in the case of VAEComb
in the Studo and RecSys17 datasets and VAEInt in the CareerBuilder12 dataset,
recommendation accuracy drops.

VAEComb

(a) Studo (b) RecSys17

(c) CareerBuilder12

Fig. 7 The plots show t-SNE embeddings for latent session representations produced with the VAE
autoencoder models trained on all three datasets using interaction data combined with the job content.
The colors of the sessions reflect the session length, where the same red color is used for sessions with
20 or more interactions

639

1 3

Using autoencoders for session-based job recommendations

5.3 Hyperparameter optimization of the baseline approaches

We conducted a grid search on the hyperparameters for the baseline approaches
using the validation set, i.e., two weeks of user interactions. As such, Table 3 reports
on the best performing configurations for each approach and dataset in terms of rec-
ommendation accuracy (see “Appendix A” for more details).

BPR We performed a grid search that includes three different values for the reg-
ularization of session features �SESSION ∈ {0.0, 0.25, 0.5} and the regularization of
item feature �ITEM ∈ {0.0, 0.25, 0.5}.

iKNN For the iKNN approach, we evaluated the values for regularization (i.e., to
avoid coincidental high similarities of rarely visited items) � ∈ {20, 50, 80} and the
normalization factor for the support between two items � ∈ {0.25, 0.5, 0.75}.

sKNN, S-sKNN and V-sKNN For all the sKNN variations that we utilize in this
paper, we conducted a grid search for the parameter k (i.e., 100, 200, 500 or 1000),

Table 3 Best performing hyperparameter settings for each evaluated baseline approach and dataset based
on nDCG@20

Approach Parameter Studo RecSys17 CareerBuilder12

BPR �
SESSION

0.25 0 0
�
ITEM

0.25 0 0
iKNN � 80 50 20

� 0.75 0.75 0.75
sKNN k 100 500 1000

SAMPLING Recent Random Random
SIMILARITY Cosine Cosine Jaccard
POPULARITY BOOST No No Yes

S-sKNN k 100 500 1000
SAMPLING Recent Random Random
SIMILARITY Cosine Jaccard Cosine
POPULARITY BOOST No No Yes

V-sKNN k 100 100 100
SAMPLING Recent Random Random
SIMILARITY Cosine Cosine Cosine
POPULARITY BOOST No No No
WEIGHTING Quadratic Quadratic Logarithmic

GRU4Rec LOSS top1-max bpr-max-0.5 top1-max
LAYERS [100] [100] [1000]
DROPOUT 0.2 0.2 0.2
BATCH SIZE 32 32 32

pRNN ACTIVATION tanh tanh softmax
LAYERS [1000] [100] [1000]
� 0.001 0.01 0.001
BATCH SIZE 512 512 512

640 E. Lacic et al.

1 3

Table 4 Prediction results (k = 20) of remaining jobs that will be subject to interaction within a session.
(Color table online)

641

1 3

Using autoencoders for session-based job recommendations

the sampling method of sessions (i.e., recent or random), the similarity function
(i.e., cosine or Jaccard) and if popular items from neighboring sessions should be
boosted. For V-sKNN, we also optimized the decay weighting function (i.e., divi-
sion, logarithmic or quadratic).

GRU4Rec In the case of GRU4Rec, we experimented with two different loss
functions {top1-max, bpr-max-0.5} , four variations of the number of GRU layers and
their sizes {[100], [100, 100], [1000], [1000, 1000]} , a dropout applied to the hidden
layer of {0.0, 0.2, 0.5} and batch sizes of {32, 128, 512}.

pRNN For the pRNN approach, we explored two activation functions {softmax ,
tanh} for the output layer, two sizes for the GRU layers {[100], [1000]} , a learning
rate � ∈ {0.01, 0.001} and batch sizes of {32, 128, 512} . With respect to the batch
size, however, due to the computational complexity of pRNN and the size of Career-
Builder12, we were only able to tune this hyperparameter for Studo and RecSys17.
As we received the best results for a batch size of 512 for both datasets, we also used
a batch size of 512 in case of CareerBuilder12.

5.4 Comparison with baseline approaches

Table 4 shows the results of comparing VAEInt and VAEComb with all baseline meth-
ods when we evaluate against the remaining jobs in the session. We report recom-
mendation accuracy in terms of nDCG and MRR, as well as a system-based nov-
elty (EPC), session-based novelty (EPD) and coverage. In the case of the next job
prediction problem, in Figs. 8 and 9, we show nDCG and EPC results for different
values of k (i.e., number of recommended jobs).

Accuracy (nDCG & MRR) On all datasets, the sKNN-based approaches achieve
high accuracy in terms of nDCG and MRR, as shown in Table 4. In terms of both
nDCG and MRR, VAEInt performs second best in RecSys17, while it performs
third best in Studo. For the Studo dataset, GRU4Rec has the highest accuracy for
both metrics. In the RecSys17 dataset, BPR-MF performs best concerning nDCG,
while POP performs best in terms of MRR. In CareerBuilder12, V-sKNN achieves
the highest nDCG, while iKNN achieves the highest MRR. In this dataset, VAEInt
achieves medium performance, which we attribute to the ample item space and spar-
sity of CareerBuilder12. The VAEComb method, however, results in a higher recom-
mendation accuracy, while training the model is much less expensive.

While the performance of sKNN-based approaches is rather stable, several base-
lines algorithms, namely POP, BPR-MF, iKNN, Bayes, GRU4Rec and pRNN, show

Coverage is reported for the ratio of recommended jobs compared to all jobs available in the data set
(left) and jobs expected in the test set (right)

Table 4 (continued)

642 E. Lacic et al.

1 3

(a) Studo

(b) RecSys Challenge 2017

(c) CareerBuilder 2012

Fig. 8 nDCG results for different recommendation list sizes (i.e., values of k) when predicting the next
job in the session. On all three datasets, both our proposed VAE approaches achieve competitive results
concerning accuracy (i.e., nDCG) metrics

643

1 3

Using autoencoders for session-based job recommendations

(a) Studo

(b) RecSys Challenge 2017

(c) CareerBuilder 2012

Fig. 9 EPC results for different recommendation list sizes (i.e., values of k) when predicting the next job
in the session. On all three datasets, both our proposed VAE approaches achieve good results concerning
beyond-accuracy (i.e., EPC) metrics

644 E. Lacic et al.

1 3

notable differences among the datasets. First, the Bayes approach establishes itself
as a competitive baseline in the Studo dataset, whereas it results in a poor perfor-
mance for the two larger datasets (i.e., RecSys17 and CareerBuilder12). In fact, for
the RecSys17 dataset, it results in the worst performance. Hence, when the domain
has a small number of items, it can be reasonable to employ such a simple and com-
putationally inexpensive method.

Second, the accuracy of POP in the RecSys17 dataset is noteworthy.14 The rea-
son for this is that in the RecSys17 dataset, the most popular job from the train set
was also the one with the highest number of interactions in the test set (i.e., around
21.5%). However, this approach will likely not result in high user satisfaction, just by
predicting the same items repeatedly. Moreover, the BPR-MF performs best in terms
of nDCG in the RecSys17 dataset, but it has the second worst performance in the
other two datasets. Also, GRU4Rec performs worse for the RecSys17 dataset when
compared to Studo and CareerBuilder12. We attribute this to bias toward popularity
(Ludewig and Jannach 2018). The performance of GRU4Rec is low, while the per-
formance of BPR-MF is high in the RecSys17 dataset. The pRNN method performs
low on all three datasets, but its recommendation accuracy is especially weak on
the CareerBuilder12 dataset. Finally, the performance of the iKNN differs among
all three datasets. While it has the highest MRR for the CareerBuilder12 dataset, the
performance in the RecSys17 dataset is the second lowest for both accuracy metrics.

For the next job prediction problem shown in Fig. 8, in all three datasets, all
approaches show a similar accuracy performance. The results confirm the presence
of bias toward popular items in the RecSys17 dataset as the popularity approach
outperforms the other algorithms until k = 3 , after which BPR-MF becomes the best
performing approach. We also attribute the sudden increase in the nDCG values for
BPR-MF and pRNN at the recommendation list of length 4 to this popularity bias
in the dataset. A closer inspection revealed that both approaches often recommend
highly popular items from the train set at the beginning of the recommendation list.
The top-1 (i.e., most popular) item that is shared between the train and test set is
also the one which gets recommended most frequently as the fourth item in the rec-
ommendation list of BPR-MF and pRNN. Besides that, for all values of k (i.e., the
number of recommended jobs), the session-based KNN approaches and GRU4Rec
achieve competitive accuracy values.

System-based novelty (EPC) As shown in Table 4, both VAE approaches achieve
top results in terms of EPC for all three datasets. VAEInt performs best on the Rec-
Sys17 dataset, while VAEComb outperforms all approaches in the CareerBuilder12
dataset. In the Studo dataset, VAEInt achieves second best to GRU4Rec. Especially
in the RecSys17 dataset, the difference in novelty is considerably high when com-
pared to other baselines. For the baselines, the sKNN approaches and GRU4Rec both
exhibit a good performance concerning the novelty of the recommended jobs. The
pRNN method, as well as POP and BPR-MF, produces recommendations that have
the lowest system-based novelty.

14 Quadrana et al. (2017) report that their popularity approach outperforms session-based RNN (Hidasi
et al. 2015) in the XING dataset used in the ACM RecSys Challenge 2016.

645

1 3

Using autoencoders for session-based job recommendations

In Fig. 9, we see that both our proposed VAE approaches outperform all others in
the CareerBuilder12 dataset after k = 9 . The sKNN baselines, as well as GRU4Rec,
show a better novelty performance for a smaller number of recommended jobs.

Session-based novelty (EPD) As depicted in Table 4, both VAE approaches
provide the best session-based novelty for the RecSys17 and CareerBuilder12 data-
sets and are competitive in the Studo dataset. The VAEComb method generates the
most surprising recommendations in the largest dataset (i.e., CareerBuilder12)
and GRU4Rec in the smallest dataset (i.e., Studo). In all cases, the sKNN-based
approaches are a competitive baseline. We can observe the most notable difference
between accuracy and EPD, however, in the CareerBuilder12 dataset, where the VAE
approaches result in a rather average accuracy while performing very well concern-
ing session-based novelty. Overall, the results indicate that both VAE approaches are
suitable for cases when we aim to generate novel session-based recommendations.

Coverage In Table 4, we report the percentage of jobs, which were recommended
and are a part of (1) all jobs available in the dataset (i.e., the complete item catalog),
and (2) the jobs that we know anonymous session users will interact within the test
set (i.e., the expected item catalog).

In terms of the coverage of all possible job postings, VAEComb performs best in
the Studo dataset. BPR-MF covers at the most the entire item catalog in the Rec-
Sys17 and CareerBuilder12 dataset. Concerning the coverage of items in the test
set (i.e., expected items), the session-based KNN approaches achieve almost per-
fect coverage in the Studo dataset. Only in the case of the RecSys17 dataset, the

Table 5 Summary of the rankings of the session-based algorithms evaluated in the job domain. (Color
table online)

“++” indicates best, “+” good, “o” average, “-” low and “- -” the worst ranking with respect to (1) accu-
racy (i.e., nDCG and MRR), (2) beyond-accuracy (i.e., EPC and EPD) and (3) coverage

646 E. Lacic et al.

1 3

BPR-MF baseline has an even higher coverage. As expected, the POP baseline
results in the worst coverage. While this baseline has high accuracy values in the
RecSys17 dataset (due to the popularity bias inherent in this dataset), it effectively
covers only a small fraction of jobs in the system. It also has to be noted that the
pRNN baseline always has the second-worst coverage. As the available item catalog
grows, the coverage drops, which suggests that the trained model focuses on a spe-
cific (i.e., relatively small) set of items, which explains the worse performance in the
largest dataset (i.e., CareerBuilder12).

5.5 Performance overview

To provide a better overview of the performance of the different session-based job
recommendation approaches, we summarize all results in Table 5 with respect to
three metric categories. That is, we report the performance on accuracy (i.e., nDCG
and MRR), beyond accuracy (i.e., EPC and EPD) and coverage (of the whole dataset
and the test set). For every approach, we assign a rank (i.e., from 1 to 11) for the par-
ticular metric in a dataset. We then aggregate these rankings across all three metric
categories and datasets. The final rankings are then normalized and assigned into
five performance buckets (i.e., from worst “- -” to best “++”; see “Appendix C” for
the calculation steps).

Concerning accuracy, the best performance is achieved by V-sKNN, our VAEInt
variant, S-sKNN and GRU4Rec. This is then followed by VAEComb and sKNN.
All other baselines achieve worse accuracy. For the beyond accuracy metric cate-
gory, both of our VAE variants achieve the best performance. This is followed by
GRU4Rec and the sKNN variants. A similar observation can be made for the metric
category coverage. Here, however, BPR-MF also shows the best, iKNN good and the
simple Bayes baseline medium coverage. Noteworthy is also the ranking score of the
VAEComb , as with our proposed method it is possible to train the autoencoder models
faster (i.e., even with a large item space) and without the need to frequently retrain
the utilized model to consider new jobs coming to the system. The pRNN approach
did not achieve a good rank in any metric category. The same is true for POP.

6 Conclusion and future work

In this work, we addressed the problem of providing job recommendations in an
anonymous, online session setting. In three datasets, i.e., Studo, RecSys17 and
CareerBuilder12, we evaluated the efficacy of using different autoencoder archi-
tectures to produce session-based job recommendations. Specifically, we utilized
autoencoders to infer latent session representations, which are used in a k-nearest
neighbor manner to recommend jobs within a session. We evaluated two types of

647

1 3

Using autoencoders for session-based job recommendations

input for the autoencoders: (1) interactions with job postings within browsing ses-
sions and (2) a combination of interactions with job postings and content features
extracted from these job postings.

We found that variational autoencoders trained on interaction and content data,
and used in a k-nearest neighbor manner, led to very good results in terms of accu-
racy compared to other autoencoder variants. A visual analysis of the embedding
spaces with t-SNE revealed that we could attribute a lower accuracy performance
when similar-sized sessions form clusters in the 2D space. Although this was mostly
the case for autoencoders trained on content features, in practice, however, such an
approach has the advantage of fixed size vectors, which means retraining is needed
less often. Consequently, depending on the application scenario, one can decide
which input for the variational autoencoder to take, i.e., to balance frequent retrain-
ing and accuracy.

Furthermore, we evaluated all autoencoder and baseline approaches with respect
to beyond-accuracy metrics, i.e., system-based and session-based novelty as well as
coverage, in two settings: Firstly, we compared the recommendation performance of
the approaches on all remaining interactions within a session, and secondly, we pre-
dicted the next job interaction in the session. We find that our proposed variational
autoencoder methods can outperform state-of-the-art approaches for sessions-based
recommender systems with respect to system-based and session-based novelty.
Besides, the session-based KNN approaches are a competitive baseline for the vari-
ational autoencoder methods with respect to accuracy and coverage.

For future work, we aim to explore the use of generative variational autoencoder
models to directly recommend jobs from the reconstructed session vector (e.g., in a
similar way as in Liang et al. 2018). Other ideas for future work include investigat-
ing all approaches used in this study in an online evaluation. We plan to conduct
an online study to ask users how satisfied and surprised they are with job recom-
mendations generated by autoencoders. Also, we plan to evaluate the accuracy in
an A/B test to conclude whether a higher system-based and session-based novelty
in a session-based offline setting leads to higher user satisfaction. Additionally,
we also plan to directly optimize for the beyond-accuracy metrics by incorporat-
ing re-ranking techniques (e.g., maximum marginal relevance Carbonell and Gold-
stein 1998). These evaluations are planned to be carried out in the Talto 15 career
platform. In summary, we hope that the approach presented in this paper will
attract further research on the effectiveness of dimensionality reduction techniques

15 Talto (https ://talto .com) is the successor of the jobs platform in Studo (http://www.studo).

648 E. Lacic et al.

1 3

for session-based job recommender systems and the effect of such methods on
beyond-accuracy metrics such as system-based and session-based novelty as well as
coverage.

Limitations Our work has several limitations. So far, we only focused on autoen-
coders to infer the latent representation of the anonymous user session. While
autoencoders are a popular choice to reduce the dimensionality of data, other deep
neural networks such as restricted Boltzmann machines (Nguyen et al. 2013), deep
belief networks (Srivastava and Salakhutdinov 2012) or convolutional neural net-
works (Shen et al. 2014) could also serve well for this task. Furthermore, additional
metadata information about jobs (e.g., textual content of job postings) could poten-
tially enhance recommendations, which we did not tackle due to the unavailabil-
ity of such data in all datasets. So far, we did not compare the approaches used in
this study concerning computational performance, like the authors of (Ludewig and
Jannach 2018) did. Moreover, in this work, we did not investigate how to model
repeated interactions on the same job postings. Although this is implicitly consid-
ered by the autoencoder variants that combine interactions with job content features,
such actions are not taken into account by the autoencoders that solely rely on inter-
action data. Also, in this work, we extracted the candidate sessions based on the
last job interaction, which is a limitation of our work. For the evaluation procedure,
we used a single time-based split for our experiments. One approach to assess the
robustness of our results would be to apply a sliding window approach to generate
splits with varying lengths. However, the size of the Studo and RecSys17 datasets
is limited, which makes such an approach infeasible. For the larger CareerBuilder
dataset, a sliding-window-based evaluation approach could be applied to test the
robustness of the method. Due to computational constraints, for the present work,
we used the same time-based split as for the Studo and the RecSys17 datasets. We
leave the exploration of more splits to future work.

Another limitation is that one of the datasets we used for our study, the Studo
dataset, is proprietary, and due to the terms of service of Moshbit, the owner of
Studo, it cannot be made available for others at this point.

Acknowledgements Open access funding provided by Graz University of Technology. This work is sup-
ported by the Know-Center, the Institute of Interactive Systems and Data Science (ISDS) of Graz Univer-
sity of Technology and Moshbit. We thank Moshbit for granting access to their dataset in Studo Jobs. We
thank Simone Kopeinik, Dieter Theiler, Tomislav Duricic and Leon Fadjevic for their feedback on this
manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

649

1 3

Using autoencoders for session-based job recommendations

Appendices

Fig. 10 Accuracy results for the different hyperparameters of the baseline approaches on the Studo data-
set

Fig. 11 Accuracy results for the different hyperparameters of the baseline approaches on the RecSys17
dataset

650 E. Lacic et al.

1 3

Hyperparameter optimization results

In this section, we report the distribution of the accuracy results achieved by opti-
mizing the hyperparameters for the baseline approaches in Sect. 5.3. For each base-
line approach, we pick those hyperparameters which showed the best performance
with respect to nDCG@20. As such, Fig. 10 shows the differences between the eval-
uated baseline configurations on the Studo dataset. Respectively, Fig. 11 depicts the
results for the RecSys17 and Fig. 12 for the CareerBuilder12 dataset.

Autoencoder embedding analysis

Figure 13 shows all autoencoder models as t-SNE plots for the Studo dataset,
i.e., AEInt , DAEInt and VAEInt trained on interactions and AEComb , DAEComb and
VAEComb trained on the combination of interactions and job content. The same is
reported for RecSys17 in Fig. 14 and CareerBuilder12 in Fig. 15.

The results indicate that both denoising autoencoders and variational autoen-
coders tend to produce more session clusters than a classic autoencoder, which
creates more of a linear pattern of neighboring sessions. In some cases, we can
observe that both the classic and denoising autoencoder models produce shapes
without clear structure and large dispersion (e.g., see Fig. 13d or 15b), which
indicates that it is hard to find a clear neighborhood of similar sessions. For the
smaller Studo dataset, if the autoencoders are solely trained on interactions, i.e.,
AEInt , DAEInt and VAEInt , more clusters are produced with sessions of different

Fig. 12 Accuracy results for the different hyperparameters of the baseline approaches on the Career-
Builder12 dataset

651

1 3

Using autoencoders for session-based job recommendations

Studo

Int Int Int

Comb Comb

(a) AE (b)DAE (c) VAE

(d)AE (e) DAE (f) VAEComb

Fig. 13 t-SNE embeddings for latent session representations produced with the three autoencoder models
trained on interaction and content data from the Studo dataset. Sessions are colored according to their
length, where the same red color is used for sessions with 20 or more interactions

RecSys17

Int Int Int

Comb Comb

(a) AE (b) DAE (c) VAE

(d) AE (e) DAE (f) VAEComb

Fig. 14 t-SNE embeddings for latent session representations for the RecSys17 dataset

652 E. Lacic et al.

1 3

sizes close to each other (e.g., Fig. 13b, c). Interestingly, if autoencoders are
trained on content, we can observe rainbow-colored shapes that are based on ses-
sion length (e.g., as shown in Fig. 13e, f). In case of a larger dataset like Career-
Builder12, we end up with several sub-clusters that exhibit this rainbow pat-
tern. This shows that when we encode the input with content features, sessions
of similar length tend to cluster. We attribute this to sessions of similar length
having similar patterns of input vectors (e.g., many right-padded zeros for short
sessions).

Aggregation of rankings

In Sect. 5.5, we report the aggregated performance of the different approaches. For
this, in Table 6 we first rank the results from each dataset (i.e., based on Table 4).
We then sum the rankings for each dataset (i.e., Studo, RecSys17 and Career-
Builder12) for the accuracy metrics (i.e., nDCG and MRR), the beyond-accuracy
metrics (i.e., EPC and EPD) and both coverage, respectively. The aggregated rank-
ings are outlined in Table 7. The rankings are then normalized with the equation

CareerBuilder12

Int Int Int

Comb Comb

(a) AE (b) DAE (c) VAE

(d) AE (e) DAE (f) VAEComb

Fig. 15 t-SNE embeddings for latent session representations for the Careerbuilder12 dataset

653

1 3

Using autoencoders for session-based job recommendations

Table 6 Ranking of the results per metric and dataset, which are derived from numerical results. (Color
table online)

Coloring is according to the rank within each dataset

654 E. Lacic et al.

1 3

Norm(x) =
x−min+1

max−min+1
 , where min is the lowest aggregated rank and max is the high-

est aggregated rank. Thus, lower results are considered better, while the worst results
receive the value 1. The results are then put into five buckets according to their val-
ues. A double plus (i.e., ++) is assigned to values between 0.0 and 0.2, while values
between 0.2 and 0.4 get assigned a single plus (i.e., +), followed by o (i.e., 0.4 until
0.6), − (i.e., 0.6 until 0.8) and for the worst results a −− (i.e., 0.8 until 1).

References

Abel, F.: We know where you should work next summer: job recommendations. In: Proceedings of the
9th ACM Conference on Recommender Systems, pp. 230–230 (2015)

Abel, F., Benczúr, A., Kohlsdorf, D., Larson, M., Pálovics, R.: Recsys challenge 2016: job recommenda-
tions. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 425–426. ACM
(2016)

Abel, F., Deldjoo, Y., Elahi, M., Kohlsdorf, D.: Recsys challenge 2017: offline and online evaluation. In:
Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 372–373 (2017)

Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based tech-
niques. IEEE Trans. Knowl. Data Eng. 24(5), 896–911 (2012)

Aggarwal, C.C.: Evaluating recommender systems. In: Recommender Systems, pp. 225–254. Springer
(2016)

Al-Otaibi, S.T., Ykhlef, M.: A survey of job recommender systems. Int. J. Phys. Sci. 7(29), 5127–5142
(2012)

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In:
Advances in Neural Information Processing Systems, pp. 153–160 (2007)

Bianchi, M., Cesaro, F., Ciceri, F., Dagrada, M., Gasparin, A., Grattarola, D., Inajjar, I., Metelli, A.M.,
Cella, L.: Content-based approaches for cold-start job recommendations. In: Proceedings of the
Recommender Systems Challenge 2017, p. 6. ACM (2017)

Bonnin, G., Jannach, D.: Automated generation of music playlists: survey and experiments. ACM Com-
put. Surv. (CSUR) 47(2), 26 (2015)

Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering documents and pro-
ducing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 335–336 (1998)

Table 7 Aggregated rankings across the three different datasets and per metric type (i.e., accuracy,
beyond accuracy and coverage)

Results are then normalized by a min-max scaling

655

1 3

Using autoencoders for session-based job recommendations

Chatzis, S.P., Christodoulou, P., Andreou, A.S.: Recurrent latent variable networks for session-based rec-
ommendation. In: Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems,
pp. 38–45. ACM (2017)

Fischer, A., Igel, C.: An introduction to restricted Boltzmann machines. In: Iberoamerican Congress on
Pattern Recognition, pp. 14–36. Springer (2012)

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings
of the 26th International Conference on World Wide Web, pp. 173–182. International World Wide
Web Conferences Steering Committee (2017)

Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender
systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)

Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-based recommenda-
tions. In: Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, pp. 843–852. ACM (2018)

Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neu-
ral networks. arXiv preprint arXiv :1511.06939 (2015)

Hidasi, B., Quadrana, M., Karatzoglou, A., Tikk, D.: Parallel recurrent neural network architectures for
feature-rich session-based recommendations. In: Proceedings of the 10th ACM Conference on Rec-
ommender Systems, pp. 241–248. ACM (2016)

Hidasi, B., Tikk, D.: General factorization framework for context-aware recommendations. Data Min.
Knowl. Discov. 30(2), 342–371 (2016)

Hong, W., Zheng, S., Wang, H., Shi, J.: A job recommender system based on user clustering. JCP 8(8),
1960–1967 (2013)

Jannach, D., Ludewig, M.: When recurrent neural networks meet the neighborhood for session-based rec-
ommendation. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp.
306–310 (2017)

Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for
graphical models. Mach. Learn. 37(2), 183–233 (1999)

Kamehkhosh, I., Jannach, D., Ludewig, M.: A comparison of frequent pattern techniques and a deep
learning method for session-based recommendation. In: RecTemp@ RecSys, pp. 50–56 (2017)

Kenthapadi, K., Le, B., Venkataraman, G.: Personalized job recommendation system at linkedin: practi-
cal challenges and lessons learned. In: Proceedings of the Eleventh ACM Conference on Recom-
mender Systems, pp. 346–347 (2017)

Kenthapadi, K., Le, B., Venkataraman, G.: Personalized job recommendation system at linkedin: practi-
cal challenges and lessons learned. In: Proceedings of the 11th ACM Conference on Recommender
Systems, pp. 346–347 (2017)

Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint. arXiv :1312.6114 (2013)
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer

42(8), 30–37 (2009)
Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J.

37(2), 233–243 (1991)
Lacic, E., Kowald, D., Traub, M., Luzhnica, G., Simon, J., Lex, E.: Tackling cold-start users in recom-

mender systems with indoor positioning systems. In: Poster Proceedings of the 9th ACM Confer-
ence on Recommender Systems (2015)

Lacic, E., Reiter-Haas, M., Duricic, T., Slawicek, V., Lex, E.: Should we embed? A study on the online
performance of utilizing embeddings for real-time job recommendations. In: Proceedings of the
13th ACM Conference on Recommender Systems, pp. 496–500. ACM (2019)

Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based recommendation. In:
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp.
1419–1428. ACM (2017)

Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filter-
ing. arXiv preprint. arXiv :1802.05814 (2018)

Lin, Z., Feng, M., Santos, C.N.d., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A structured self-attentive
sentence embedding. arXiv preprint. arXiv :1703.03130 (2017)

Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H.: Stamp: short-term attention/memory priority model for ses-
sion-based recommendation. In: Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 1831–1839. ACM (2018)

Liu, R., Rong, W., Ouyang, Y., Xiong, Z.: A hierarchical similarity based job recommendation service
framework for university students. Front. Comput. Sci. 11(5), 912–922 (2017)

656 E. Lacic et al.

1 3

Ludewig, M., Jannach, D.: Evaluation of session-based recommendation algorithms. User Model. User-
Adap. Inter. 28(4–5), 331–390 (2018)

Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint.

arXiv :1511.05644 (2015)
Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A.M., Gama, J.: Forgetting methods for incremental

matrix factorization in recommender systems. In: Proceedings of the 30th Annual ACM Symposium
on Applied Computing, pp. 947–953. ACM (2015)

McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt
recommender systems. In: ACM CHI’06 (2006)

Mine, T., Kakuta, T., Ono, A.: Reciprocal recommendation for job matching with bidirectional feedback.
In: 2013 Second IIAI International Conference on Advanced Applied Informatics, pp. 39–44. IEEE
(2013)

Mishra, S.K., Reddy, M.: A bottom-up approach to job recommendation system. In: Proceedings of the
Recommender Systems Challenge, p. 4. ACM (2016)

Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of
the 27th International Conference on International Conference on Machine Learning, pp. 807–814
(2010)

Nguyen, T.D., Tran, T., Phung, D., Venkatesh, S.: Learning sparse latent representation and distance met-
ric for image retrieval. In: 2013 IEEE International Conference on Multimedia and Expo (ICME),
pp. 1–6. IEEE (2013)

Parikh, A., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language
inference. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 2249–2255 (2016)

Parra, D., Sahebi, S.: Recommender systems: sources of knowledge and evaluation metrics. In: Advanced
Techniques in Web Intelligence-2: Web User Browsing Behaviour and Preference Analysis, pp.
149–175. Springer (2013)

Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems. In: Proceedings
of the fifth ACM conference on Recommender systems, pp. 157–164 (2011)

Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-based recommendations
with hierarchical recurrent neural networks. In: Proceedings of the Eleventh ACM Conference on
Recommender Systems, pp. 130–137. ACM (2017)

Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from
implicit feedback. In: Proceedings of the Twenty-fifth Conference on Uncertainty in Artificial Intel-
ligence, pp. 452–461. AUAI Press (2009)

Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep
generative models. arXiv preprint. arXiv :1401.4082 (2014)

Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algo-
rithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295.
ACM (2001)

Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: Autorec: autoencoders meet collaborative filtering. In:
Proceedings of the 24th International Conference on World Wide Web, pp. 111–112. ACM (2015)

Shani, G., Heckerman, D., Brafman, R.I.: An mdp-based recommender system. J. Mach. Learn. Res.
6(Sep), 1265–1295 (2005)

Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with convolutional-pooling
structure for information retrieval. In: Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management, pp. 101–110. ACM (2014)

Siting, Z., Wenxing, H., Ning, Z., Fan, Y.: Job recommender systems: a survey. In: 2012 7th International
Conference on Computer Science Education (ICCSE), pp. 920–924 (2012)

Smirnova, E., Vasile, F.: Contextual sequence modeling for recommendation with recurrent neural net-
works. arXiv preprint. arXiv :1706.07684 (2017)

Song, Y., Elkahky, A.M., He, X.: Multi-rate deep learning for temporal recommendation. In: Proceedings
of the 39th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 909–912. ACM (2016)

Srivastava, N., Salakhutdinov, R.: Learning representations for multimodal data with deep belief nets. In:
International Conference on Machine Learning Workshop, Vol. 79 (2012)

Strub, F., Gaudel, R., Mary, J.: Hybrid recommender system based on autoencoders. In: Proceedings of
the 1st Workshop on Deep Learning for Recommender Systems, pp. 11–16. ACM (2016)

657

1 3

Using autoencoders for session-based job recommendations

Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based recommendations. In:
Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 17–22 (2016)

Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencod-
ers. arXiv preprint. arXiv :1703.00395 (2017)

Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop, coursera: neural networks for machine learning. Univer-
sity of Toronto, Technical Report (2012)

Tuan, T.X., Phuong, T.M.: 3d convolutional networks for session-based recommendation with content
features. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 138–146.
ACM (2017)

Twardowski, B.: Modelling contextual information in session-aware recommender systems with neural
networks. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 273–276.
ACM (2016)

Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for recommender systems. In:
Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 109–116. ACM (2011)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.:
Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008
(2017)

Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with
denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning,
pp. 1096–1103. ACM (2008)

Volkovs, M., Yu, G.W., Poutanen, T.: Content-based neighbor models for cold start in recommender sys-
tems. In: Proceedings of the Recommender Systems Challenge 2017, p. 7. ACM (2017)

Voorhees, E.: Proceedings of the 8th Text Retrieval Conference. TREC-8 Question Answering Track
Report, pp. 77–82 (1999)

Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural
networks. arXiv preprint. arXiv :1811.00855 (2018)

Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural
networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, pp. 346–353
(2019)

Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-n recom-
mender systems. In: Proceedings of the Ninth ACM International Conference on Web Search and
Data Mining, pp. 153–162. ACM (2016)

Xiao, W., Xu, X., Liang, K., Mao, J., Wang, J.: Job recommendation with hawkes process: an effective
solution for recsys challenge 2016. In: Proceedings of the Recommender Systems Challenge, p. 11.
ACM (2016)

Yuan, F., Karatzoglou, A., Arapakis, I., Jose, J.M., He, X.: A simple convolutional generative network for
next item recommendation. In: Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, pp. 582–590 (2019)

Zhang, C., Cheng, X.: An ensemble method for job recommender systems. In: Proceedings of the Recom-
mender Systems Challenge, p. 2. ACM (2016)

Zhang, Y.C., Séaghdha, D.Ó., Quercia, D., Jambor, T.: Auralist: introducing serendipity into music rec-
ommendation. In: Proceedings of the Fifth ACM International Conference on Web Search and Data
Mining, pp. 13–22. ACM (2012)

Zhou, T., Kuscsik, Z., Liu, J.G., Medo, M., Wakeling, J.R., Zhang, Y.C.: Solving the apparent diversity-
accuracy dilemma of recommender systems. Proc. Natl. Acad. Sci. 107(10), 4511–4515 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Emanuel Lacic is a Senior Researcher and Recommender Systems Architect in the Social Computing
team at the Know-Center. He is a PhD student at Graz University of Technology and a former visit-
ing researcher at the Computer Science department of the University of California, Los Angeles. He has
an M.Sc. and B.Sc. in Software Engineering and Information Systems from the University of Zagreb.
His research interests are in the fields of Recommender Systems, Deep Learning and Social Network
Analysis.

658 E. Lacic et al.

1 3

Markus Reiter‑Haas is a researcher at Moshbit GmbH and is responsible for the recommender system of
the Talto career platform. He has a background in Computer Science at the Graz University of Technol-
ogy with a focus on Knowledge Technologies. His master thesis tackled the evaluation of student job
recommendations on the Talto predecessor Studo Jobs. His current research concentrates on creating low-
dimensional embeddings for effective retrieval in the job domain.

Dominik Kowald is a post-doctoral researcher and deputy research area manager of the Social Computing
team at the Know-Center. He has a Ph.D. (with hons), M.Sc. (with hons) and B.Sc. in Computer Science
from Graz University of Technology. His research interests are in the fields of recommender systems,
fairness and biases in algorithms, and computational social science, in which he has published more than
60 papers so far.

Manoj Reddy Dareddy is a Ph.D. Candidate in the Computer Science department at the University of
California Los Angeles. His research interest is in recommender systems and applied machine learning.
More specifically, Manoj works on emerging frontiers in personalization such as privacy and explainabil-
ity. He received his Masters from the University of Michigan Ann Arbor and Bachelors from Carnegie
Mellon University in Qatar.

Junghoo Cho is a professor in the Department of Computer Science at the University of California, Los
Angeles. He received a Ph.D. degree in Computer Science from Stanford University and a B.S. degree
in physics from Seoul National University. His research interest is in the theory and practice of learning,
particularly in the area of language acquisition and understanding. He is a recipient of prestigious awards
such as the 10-Year Best Paper Award at VLDB 2010, NSF CAREER Award or IBM Faculty Award.

Elisabeth Lex is an assistant professor and head of the Social Computing Lab at Graz University of Tech-
nology, Austria. She received a Ph.D. and an M.Sc. degree in Computer Science from Graz University
of Technology. Her research interests are in the development of personalized recommender systems, in
particular, algorithms based on psychological theory, as well as in computational social science, more
specifically, using behavioral and network data to investigate human activity and social dynamics.

Affiliations

Emanuel Lacic1 · Markus Reiter‑Haas2 · Dominik Kowald1 ·
Manoj Reddy Dareddy3 · Junghoo Cho3 · Elisabeth Lex4

 Emanuel Lacic
 elacic@know-center.at

 Markus Reiter-Haas
 markus.reiter-haas@moshbit.com

 Dominik Kowald
 dkowald@know-center.at

 Manoj Reddy Dareddy
 mdareddy@cs.ucla.edu

 Junghoo Cho
 cho@cs.ucla.edu

1 Know-Center GmbH, Graz, Austria
2 Moshbit GmbH, Graz, Austria
3 University of California, Los Angeles, USA
4 Graz University of Technology, Graz, Austria

Chapter 4

Conclusions and Outlook

This thesis investigated the impact of utilizing different information sources, as such
are nowadays available in many application domains. The gained insights have been
further utilized to develop a scalable and customizable architecture suited for pro-
viding recommendations in a multi-domain environment. Building upon this, this
thesis showed how to provide recommendations in real-time while still balancing the
trade-off between the accuracy and runtime. Finally, in order to tackle the problem
of improving on measures that go beyond accuracy, first an online user study was
conducted to investigate the user acceptance of real-time recommendations. Follow-
ing that, this thesis addressed anonymous session users and proposed a new method
for providing real-time recommendations which improve on the recommendation
performance with respect to beyond accuracy measures.

Thus, this chapter concludes this thesis by summarizing the achieved results
and scientific contributions in Section 4.1, stating the limitations in Section 4.2 and
discussing topics as well as open questions for future research in Section 4.3.

4.1 Results and Contribution

This section presents the main contributions of this thesis with respect to the re-
search questions that were introduced in Chapter 1.

122

4.1. RESULTS AND CONTRIBUTION 123

RQ1: How does combining different data sources and recommender ap-
proaches impact the robustness of recommendations?

Recommender systems often consider only user-item interactions and neglect to in-
corporate any additional contextual information. As such, the focus of the first
research question has been on understanding the impact of utilizing different infor-
mation sources, as well as how to combine them in order to provide more robust
recommendations. This has resulted in the introduction of different content and
network-based similarity features that can be applied to popular nearest-neighbor
based methods. Such an approach further led to a better recommendation perfor-
mance as, for example, the network structure that was derived from social inter-
actions (e.g., likes or comments) was observed as a particularly beneficial feature.
Within additional experimental setups it was presented how to combine the differ-
ent information sources (e.g., social, location, or purchase data in case of a social
e-commerce platform) and improve the quality of recommendations while being able
to cover the whole user base with respect to relevant content. Furthermore, it was
shown how such an approach can be especailly beneficial for users in a cold-start set-
ting. Finally, with respect to the first research question, this thesis also contributes
with SocRecM, a Java-based framework for providing real-time recommendations in
the e-commerce domain that exploits heterogeneous information sources.

RQ2: How can we address customization, scalability and real-time per-
formance across multiple recommender systems domains?

Most literature on applying recommender algorithms focuses only on scenarios within
one specific application domain. As such, it has often been overlooked how to simul-
taneously support a diverse set of domains within the same recommender system.
Thus, the second research question tackled the problem of building a recommender
system for a multi-domain environment. This has resulted into a categorization
of four different aspects that such a system needs to handle. First, service iso-
lation has to be provided, as possible load spikes with respect to the number of
recommendation requests of one domain should not interfere with the performance
of another one. Second, the diversity of available information sources has to be
taken into account, as these heavily differ between individual application settings.

4.1. RESULTS AND CONTRIBUTION 124

Third, algorithm specific parameters should be customizable between the individual
domains. This not only fosters reproducibility of the utilized approach, but also
makes it possible to use the best performing approach for each domain instead of
relying on a single suboptimal solution. Fourth, fault tolerance needs to be ensured
via mechanisms like dynamic horizontal scaling, as domains do not necessary share
the same requirements with respect to runtime, data throughput and the number
of recommendation requests. To put everything together, this thesis improved on
the previously mentioned SocRecM framework with respect to the second research
question. As such, it also contributes with ScaR, a scalable recommendation frame-
work that is applicable for a multi-domain setting. To show its applicability, this
thesis further showed how ScaR can be adapted for various domains like Tourism,
Music, Venues, E-Commerce, TEL or Jobs, just to name a few.

RQ3: How can we balance the trade-off between accuracy and runtime
in real-time recommender systems?

One important aspect of recommender systems when applied in an online setting
is to provide the recommendations in real-time. To achieve this, the most com-
mon approach is to calculate recommendations in a batch-wise offline manner and
cache the results to be fetched at a later point in time. However, such an approach
can potentially miss the current context of the user’s real-time demand. Thus, the
third research question has looked into how to balance the open problem of showing
accurate recommendations while considering a user’s real-time interest. The exper-
imental results presented in this thesis have shown that search engine technology
can be leveraged to generate recommendations under real-time constraints. More-
over, the reported scalability experiments have shown that under an exponentially
growing workload (i.e., incoming recommendation requests), the average runtime
performance of a utilized approach will continue to increase. But by adapting the
recommendation algorithms to be suited for a scalable architecture, it is possible
to counter this effect and run either the desired approaches or multiple combina-
tions of them while achieving the expected accuracy in addition to guarantying the
targeted real-time performance. In case of needing to restrict the usage of com-
puting resources, this thesis further showed that the runtime performance can be
additionally improved on an algorithmic level. For instance, this can be done via

4.2. LIMITATIONS 125

greedy pre-filtering in nearest-neighbor methods or by utilizing neural embeddings
that present a condensed form of a user’s preference.

RQ4: How can we improve real-time recommendations beyond accu-
racy?

Most work that focus on improving recommendation algorithms follow the assump-
tion that a higher offline accuracy performance directly translates into a better user
acceptance when applied in an online setting. But the research community has
recognized that other factors like the human need for variety and discovery may
play a crucial role in how satisfied a user will be with the displayed recommenda-
tions. As such, the fourth research question tackled the problem of going beyond
accuracy improvements in order to better understand the true utility of real-time
recommendations. For this, this thesis first contributed with an online user study
which showed how neural embeddings, which can improve the recommendation per-
formance on offline measures like diversity, serendipity, and novelty, lead to a better
user acceptance in an online setting. This, however, heavily depends on the loca-
tion context where the recommendations are displayed and further strengthens the
argument that conducting an offline experiment that focuses on improving accuracy
is not enough. After that, this thesis specifically addressed the problem of pro-
viding real-time recommendations to anonymous user sessions. This resulted in a
novel approach that utilizes different autoencoder architectures to extract the latent
representation of a particular session. In an extensive comparison study, using the
session embeddings in a nearest-neighbor manner achieved comparable accuracy re-
sults with state-of-the-art session-based recommendation approaches but managed
to provide a better performance with respect to beyond accuracy measures.

4.2 Limitations

The author of this thesis recognizes several limitations of the present work and
discusses them in this section.

Information sources. This thesis has considered various information sources in
order to improve the robustness of recommendations. However, it did not go into

4.2. LIMITATIONS 126

comparing a single source of information across different domains, rather it focused
on the data that is available within each domain separately. This opens the path for
future work to investigate the effectiveness of sharing the same source of information
across domains that usually do not have anything in common, especially with re-
spect to current literature on cross-domain recommender systems. Furthermore, the
gained insights mostly resulted from simulating the user behavior within an offline
experimental setup that uses only a specific snapshot of the available data. This
could be alleviated with multiple data snapshots or by conducting an online user
study. The later approach is usually much harder to set up, but tracking the user
acceptance within a longer timeframe would result in a better understanding of the
true impact of utilizing different information sources.

Comparison with other frameworks. Over the past decade, there have been
several recommender frameworks reported in the literature. These include LensKit,
LightFM, MyMediaLite, LibRec, RankSys or Cornac, just to name a few. To ex-
tend this list, one of the contributions of this thesis are two different recommender
frameworks, namely SocRecM and ScaR. Although this was not the focus of the
thesis, one limitation is that a comparison with other recommender frameworks was
not done. This inherently lies in the fact that the presented research insights are
more related to SaaS-based recommender systems (e.g., like the one from IBM Wat-
son) which are close-sourced with respect to handling challenges like scalability or
real-time recommendation performance. Nevertheless, this paves the way for fu-
ture work to focus on adapting and extending the existing literature on framework
comparisons with respect to requirements that need to considered while providing
recommendations that are in an online real-time setting.

Architectural choice. While this thesis did investigate how to address the design
decisions of customization, scalability and real-time performance, it did so by propos-
ing only a single architectural solution. For instance, the Apache Solr search engine
has been leveraged to ensure the real-time performance of the implemented recom-
mendation algorithms. But one could, for instance, use other software technologies
suited for handling data in real-time, like Elasticsearch or Sphinx. Moreover, this
thesis proposed an architecture that is based on microservices. For future work,
one could for example look into making a more in depth comparison with other

4.3. TOPICS FOR FUTURE RESEARCH 127

architectural design decisions, like the ones in a lambda architecture.

Algorithmic comparisons. Almost simultaneously with the evolution of the field
of NLP, the research interest in recommender systems seems to have significantly in-
creased over the past eight years. Although within this thesis, extensive algorithmic
experiments were conducted, one limitation could be the choice of algorithms that
were compared against in the reported research results. Even though this always
depends on the specific research question and experimental scenario that is tackled,
nowadays, there are a multitude of different recommendation algorithms that report
state-of-the-art performance. Be it simple neighborhood based methods, computa-
tionally intensive matrix factorization algorithms or even more complex deep and
wide neural network architectures, the choice of algorithms is abundant. This also
reflects the current trend of revisiting the impact of recommendation algorithms.
Correspondingly, the research community has identified important topics like the
reproducibility of research results or algorithmic performance on measures other
than accuracy.

4.3 Topics for Future Research

To conclude, this thesis states some additional potential topics for future work and
open questions that could be a natural extension of the presented contributions.

Tackling biases. One important topic that future work on recommender systems
in general need to focus on is how to handle biases. For example, polarization in
online information [Kopeinik et al., 2019] is something that a recommender system
could easily reinforce. This is in accordance to recent work [Baeza-Yates, 2020, Ab-
dollahpouri et al., 2021] which looks into the impact of different biases like activity,
algorithmic, cognitive or popularity bias. As all of them actually form a vicious
cycle, further research can be directed into extending the notion of beyond accu-
racy evaluation with different methods on identifying and removing biases from the
utilized information sources.

Incorporating privacy. Another possible extension of this thesis is to focus on
topics related to recommender privacy. With the rise of different legal frameworks

4.3. TOPICS FOR FUTURE RESEARCH 128

like the GDPR [Krebs et al., 2019], recommender systems that are applied in various
domains need to ensure that a user’s personal information is not exposed. Especially
in a multi-domain setting, this would result in severe privacy issues. Recent work
has started to go into that direction with approaches like meta-learning [Finn et al.,
2017] or privacy budgets [Muellner et al., 2021] and show that the topic of privacy
will need to be investigated in much more detail.

Approximating online performance. For most researchers, the gold standard
to evaluate the true utility of a recommender system is by conducting an AB test.
As setting this up is hard, recent work goes into the direction of utilizing counter-
factual estimators to estimate how a new recommendation policy for bandits would
perform [Saito and Joachims, 2021] or model online interaction patterns by using
simulators [McInerney et al., 2021]. Overall, the problems of approximating the
online performance (e.g., CTR) of a recommender algorithm is still something the
research community struggles with and would need to be investigated further.

Providing session-aware real-time recommendations. Session-aware recom-
mendations, which leverage information about past user sessions, have recently
gained increased interest. This opens up further research possibilities on how to
efficiently adapt them for online recommendations which need to be provided in
real-time. To build up on this, topics on how to handle shifts in a user’s short-term
interest with respect to, for example, providing reminders or considering popularity
trends come into play [Jannach et al., 2017]. Actually, as stated by Latifi et al. [Lat-
ifi et al., 2021], there is a huge potential for more sophisticated approaches which
combine both, the short-term and long-term preferences of a given user.

The incorporation of additional information sources, providing real-time recom-
mendations as well as improving their prediction quality beyond just accuracy, will
continue to be the focus of future research. Especially by considering the nowa-
days increased adoption of content personalization in a myriad of different domains
and application scenarios. The author of this thesis hopes that the research com-
munity will benefit from the presented contributions and believes that the above-
mentioned open questions incentivize future research on real-time recommenders in
multi-domain settings.

Bibliography

[Abdollahpouri et al., 2021] Abdollahpouri, H., Mansoury, M., Burke, R.,
Mobasher, B., and Malthouse, E. (2021). User-centered evaluation of popular-
ity bias in recommender systems. In Proceedings of the 29th ACM Conference on
User Modeling, Adaptation and Personalization, pages 119–129.

[Adomavicius and Tuzhilin, 2008] Adomavicius, G. and Tuzhilin, A. (2008).
Context-aware recommender systems. In Proceedings of the 2008 ACM Confer-
ence on Recommender Systems, RecSys ’08, pages 335–336. ACM.

[Agarwal et al., 2010] Agarwal, D., Chen, B.-C., and Elango, P. (2010). Fast on-
line learning through offline initialization for time-sensitive recommendation. In
Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 703–712.

[Al-Ghossein et al., 2021] Al-Ghossein, M., Abdessalem, T., and Barre, A. (2021). A
survey on stream-based recommender systems. ACM Computing Surveys (CSUR),
54(5):1–36.

[Amatriain, 2013] Amatriain, X. (2013). Big & personal: Data and models behind
netflix recommendations. In Proc. of BigMine ’13.

[Baeza-Yates, 2020] Baeza-Yates, R. (2020). Bias in search and recommender sys-
tems. In Fourteenth ACM Conference on Recommender Systems, pages 2–2.

[Balabanović and Shoham, 1997] Balabanović, M. and Shoham, Y. (1997). Fab:
content-based, collaborative recommendation. Communication of ACM, 40(3):66–
72.

129

BIBLIOGRAPHY 130

[Beel et al., 2016] Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., and Gipp, B.
(2016). Towards reproducibility in recommender-systems research. User modeling
and user-adapted interaction, 26(1):69–101.

[Beel et al., 2013] Beel, J., Genzmehr, M., Langer, S., Nürnberger, A., and Gipp,
B. (2013). A comparative analysis of offline and online evaluations and discus-
sion of research paper recommender system evaluation. In Proceedings of the in-
ternational workshop on reproducibility and replication in recommender systems
evaluation, pages 7–14.

[Belém et al., 2013] Belém, F., Santos, R., Almeida, J., and Gonçalves, M. (2013).
Topic diversity in tag recommendation. In Proceedings of the 7th ACM conference
on Recommender systems, pages 141–148.

[Berndsen et al., 2020] Berndsen, J., Smyth, B., and Lawlor, A. (2020). Fit to
run: Personalised recommendations for marathon training. In Fourteenth ACM
Conference on Recommender Systems, pages 480–485.

[Bischoff, 2012] Bischoff, K. (2012). We love rock ’n’ roll: Analyzing and predicting
friendship links in last.fm. In Proceedings of the 4th Annual ACM Web Science
Conference, WebSci ’12, pages 47–56. ACM.

[Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet
allocation. the Journal of machine Learning research, 3:993–1022.

[Bonab et al., 2021] Bonab, H., Aliannejadi, M., Vardasbi, A., Kanoulas, E., and
Allan, J. (2021). Cross-market product recommendation. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management,
pages 110–119.

[Cantador et al., 2015] Cantador, I., Fernández-Tobías, I., Berkovsky, S., and Cre-
monesi, P. (2015). Cross-domain recommender systems. In Recommender Systems
Handbook. Springer.

[Chan et al., 2013] Chan, S., Stone, T., Szeto, K. P., and Chan, K. H. (2013). Pre-
dictionio: a distributed machine learning server for practical software develop-
ment. In Proc. of CIKM ’13.

BIBLIOGRAPHY 131

[Chandramouli et al., 2011] Chandramouli, B., Levandoski, J. J., Eldawy, A., and
Mokbel, M. F. (2011). Streamrec: A real-time recommender system. In Pro-
ceedings of the 2011 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’11, pages 1243–1246.

[Chen et al., 2013] Chen, C., Yin, H., Yao, J., and Cui, B. (2013). Terec: A tempo-
ral recommender system over tweet stream. Proceedings of the VLDB Endowment,
6(12):1254–1257.

[Dacrema et al., 2019] Dacrema, M. F., Cremonesi, P., and Jannach, D. (2019). Are
we really making much progress? a worrying analysis of recent neural recommen-
dation approaches. In Proceedings of the 13th ACM Conference on Recommender
Systems, pages 101–109.

[Dai et al., 2014] Dai, C., Qian, F., Jiang, W., Wang, Z., and Wu, Z. (2014). A
personalized recommendation system for netease dating site. Proc. VLDB Endow.,
7(13):1760–1765.

[Das et al., 2007] Das, A. S., Datar, M., Garg, A., and Rajaram, S. (2007). Google
news personalization: scalable online collaborative filtering. In Proceedings of the
16th international conference on World Wide Web, pages 271–280.

[Davidson et al., 2010] Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet,
T., Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston, B., et al. (2010).
The youtube video recommendation system. In Proceedings of the fourth ACM
conference on Recommender systems, pages 293–296.

[de Souza Pereira Moreira et al., 2021] de Souza Pereira Moreira, G., Rabhi, S.,
Lee, J. M., Ak, R., and Oldridge, E. (2021). Transformers4rec: Bridging the gap
between nlp and sequential/session-based recommendation. In Fifteenth ACM
Conference on Recommender Systems, pages 143–153.

[Diaz-Aviles et al., 2012] Diaz-Aviles, E., Drumond, L., Schmidt-Thieme, L., and
Nejdl, W. (2012). Real-time top-n recommendation in social streams. In Proceed-
ings of the sixth ACM conference on Recommender systems, pages 59–66. ACM.

[Duricic et al., 2018] Duricic, T., Lacic, E., Kowald, D., and Lex, E. (2018). Trust-
based collaborative filtering: tackling the cold start problem using regular equiv-

BIBLIOGRAPHY 132

alence. In Proceedings of the 12th ACM Conference on Recommender Systems,
pages 446–450. ACM.

[Eksombatchai et al., 2018] Eksombatchai, C., Jindal, P., Liu, J. Z., Liu, Y.,
Sharma, R., Sugnet, C., Ulrich, M., and Leskovec, J. (2018). Pixie: A system for
recommending 3+ billion items to 200+ million users in real-time. In Proceedings
of the 2018 world wide web conference, pages 1775–1784.

[Ekstrand et al., 2011] Ekstrand, M. D., Ludwig, M., Konstan, J. A., and Riedl,
J. T. (2011). Rethinking the recommender research ecosystem: reproducibility,
openness, and lenskit. In Proceedings of the fifth ACM conference on Recom-
mender systems, pages 133–140. ACM.

[Elahi et al., 2013] Elahi, M., Braunhofer, M., Ricci, F., and Tkalcic, M. (2013).
Personality-based active learning for collaborative filtering recommender systems.
In Congress of the Italian Association for Artificial Intelligence, pages 360–371.
Springer.

[Elkahky et al., 2015] Elkahky, A. M., Song, Y., and He, X. (2015). A multi-view
deep learning approach for cross domain user modeling in recommendation sys-
tems. In Proceedings of the 24th International Conference on World Wide Web,
pages 278–288.

[Essinger et al., 2021] Essinger, S., Huber, D., and Tang, D. (2021). Air: Personal-
ized product recommender system for nike’s digital transformation. In Fifteenth
ACM Conference on Recommender Systems, pages 530–532.

[Feng and Wang, 2012] Feng, W. and Wang, J. (2012). Incorporating heterogeneous
information for personalized tag recommendation in social tagging systems. In
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’12, pages 1276–1284. ACM.

[Finn et al., 2017] Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-
learning for fast adaptation of deep networks. In International Conference on
Machine Learning, pages 1126–1135. PMLR.

BIBLIOGRAPHY 133

[Freno, 2017] Freno, A. (2017). Practical lessons from developing a large-scale rec-
ommender system at zalando. In Proceedings of the Eleventh ACM Conference
on Recommender Systems, pages 251–259.

[Gao et al., 2013] Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., and Guo,
J. (2013). Cross-domain recommendation via cluster-level latent factor model.
In Joint European conference on machine learning and knowledge discovery in
databases, pages 161–176. Springer.

[Garcin et al., 2014] Garcin, F., Faltings, B., Donatsch, O., Alazzawi, A., Bruttin,
C., and Huber, A. (2014). Offline and online evaluation of news recommender sys-
tems at swissinfo. ch. In Proceedings of the 8th ACM Conference on Recommender
systems, pages 169–176.

[Ge et al., 2010] Ge, M., Delgado-Battenfeld, C., and Jannach, D. (2010). Beyond
accuracy: evaluating recommender systems by coverage and serendipity. In Pro-
ceedings of the fourth ACM conference on Recommender systems, pages 257–260.
ACM.

[Georgiev and Nakov, 2013] Georgiev, K. and Nakov, P. (2013). A non-iid frame-
work for collaborative filtering with restricted boltzmann machines. In Interna-
tional Conference on Machine Learning, pages 1148–1156.

[Gomez-Uribe and Hunt, 2015a] Gomez-Uribe, C. A. and Hunt, N. (2015a). The
netflix recommender system: Algorithms, business value, and innovation. ACM
Trans. Manage. Inf. Syst., 6(4):13:1–13:19.

[Gomez-Uribe and Hunt, 2015b] Gomez-Uribe, C. A. and Hunt, N. (2015b). The
netflix recommender system: Algorithms, business value, and innovation. ACM
Transactions on Management Information Systems (TMIS), 6(4):1–19.

[Gunawardana and Shani, 2009] Gunawardana, A. and Shani, G. (2009). A survey
of accuracy evaluation metrics of recommendation tasks. Journal of Machine
Learning Research, 10(12).

[Guo et al., 2011] Guo, S., Wang, M., and Leskovec, J. (2011). The role of social
networks in online shopping: Information passing, price of trust, and consumer
choice. In Proc., EC ’11, pages 157–166. ACM.

BIBLIOGRAPHY 134

[Gupta et al., 2013] Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., and Zadeh,
R. (2013). Wtf: The who to follow service at twitter. In Proceedings of the
22Nd International Conference on World Wide Web, WWW ’13, pages 505–514,
Republic and Canton of Geneva, Switzerland. International World Wide Web
Conferences Steering Committee.

[Gupta et al., 2014] Gupta, P., Satuluri, V., Grewal, A., Gurumurthy, S., Zhabiuk,
V., Li, Q., and Lin, J. (2014). Real-time twitter recommendation: Online motif
detection in large dynamic graphs. Proc. VLDB Endow., 7(13):1379–1380.

[Han and Yamana, 2017] Han, J. and Yamana, H. (2017). A survey on recommen-
dation methods beyond accuracy. IEICE TRANSACTIONS on Information and
Systems, 100(12):2931–2944.

[He et al., 2017] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017).
Neural collaborative filtering. In Proceedings of the 26th International Conference
on World Wide Web, pages 173–182. International World Wide Web Conferences
Steering Committee.

[Herlocker et al., 2004] Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl,
J. T. (2004). Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems (TOIS), 22(1):5–53.

[Hidasi and Karatzoglou, 2018] Hidasi, B. and Karatzoglou, A. (2018). Recurrent
neural networks with top-k gains for session-based recommendations. In Pro-
ceedings of the 27th ACM international conference on information and knowledge
management, pages 843–852.

[Hidasi et al., 2015] Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. (2015).
Session-based recommendations with recurrent neural networks. arXiv preprint
arXiv:1511.06939.

[Hu et al., 2008] Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering
for implicit feedback datasets. In 2008 Eighth IEEE International Conference on
Data Mining, pages 263–272. Ieee.

[Huang et al., 2015] Huang, Y., Cui, B., Zhang, W., Jiang, J., and Xu, Y. (2015).
Tencentrec: Real-time stream recommendation in practice. In Proceedings of the

BIBLIOGRAPHY 135

2015 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’15, pages 227–238.

[Im and Hars, 2007] Im, I. and Hars, A. (2007). Does a one-size recommendation
system fit all? the effectiveness of collaborative filtering based recommendation
systems across different domains and search modes. ACM Transactions on Infor-
mation Systems (TOIS), 26(1):4–es.

[Jamali and Ester, 2010] Jamali, M. and Ester, M. (2010). A matrix factorization
technique with trust propagation for recommendation in social networks. In Pro-
ceedings of the Fourth ACM Conference on Recommender Systems, pages 135–142.
ACM.

[Jannach et al., 2017] Jannach, D., Ludewig, M., and Lerche, L. (2017). Session-
based item recommendation in e-commerce: on short-term intents, reminders,
trends and discounts. User Modeling and User-Adapted Interaction, 27(3):351–
392.

[Jannach et al., 2012] Jannach, D., Zanker, M., Ge, M., and Gröning, M. (2012).
Recommender systems in computer science and information systems–a landscape
of research. In International conference on electronic commerce and web technolo-
gies, pages 76–87. Springer.

[Jäschke et al., 2007] Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., and
Stumme, G. (2007). Tag recommendations in folksonomies. In European con-
ference on principles of data mining and knowledge discovery, pages 506–514.
Springer.

[Kang et al., 2017] Kang, W.-C., Fang, C., Wang, Z., and McAuley, J. (2017).
Visually-aware fashion recommendation and design with generative image models.
In 2017 IEEE International Conference on Data Mining (ICDM), pages 207–216.
IEEE.

[Kang and McAuley, 2018] Kang, W.-C. and McAuley, J. (2018). Self-attentive se-
quential recommendation. In 2018 IEEE International Conference on Data Min-
ing (ICDM), pages 197–206. IEEE.

BIBLIOGRAPHY 136

[Kersbergen and Schelter, 2021] Kersbergen, B. and Schelter, S. (2021). Learnings
from a retail recommendation system on billions of interactions at bol. com. In
2021 IEEE 37th International Conference on Data Engineering (ICDE), pages
2447–2452. IEEE.

[Kontaxis et al., 2012] Kontaxis, G., Polychronakis, M., and Markatos, E. P. (2012).
Minimizing information disclosure to third parties in social login platforms. In-
ternational Journal of Information Security, 11(5):321–332.

[Kopeinik et al., 2019] Kopeinik, S., Lex, E., Kowald, D., Albert, D., and Seitlinger,
P. (2019). A real-life school study of confirmation bias and polarisation in infor-
mation behaviour. In European Conference on Technology Enhanced Learning,
pages 409–422. Springer.

[Koren et al., 2009] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factoriza-
tion techniques for recommender systems. Computer, 42(8):30–37.

[Kowald et al., 2018] Kowald, D., Lacic, E., Theiler, D., and Lex, E. (2018). Afel-
rec: A recommender system for providing learning resource recommendations
in social learning environments. Social Interaction-Based Recommender Systems
(SIR’2018) Workshop co-located with Conference on Information and Knowledge
Management (CIKM’2018) conference.

[Krebs et al., 2019] Krebs, L. M., Alvarado Rodriguez, O. L., Dewitte, P., Ausloos,
J., Geerts, D., Naudts, L., and Verbert, K. (2019). Tell me what you know: Gdpr
implications on designing transparency and accountability for news recommender
systems. In Extended Abstracts of the 2019 CHI Conference on Human Factors
in Computing Systems, pages 1–6.

[Lacic, 2016] Lacic, E. (2016). Real-time recommendations in a multi-domain en-
vironment. In Extended Proceedings at Doctoral Consortium of the 27th ACM
Conference on Hypertext and Social Media (HT’16).

[Lacic, 2017] Lacic, E. (2017). ”real-time recommendations in a multi-domain en-
vironment” by emanuel lacic with prateek jain as coordinator. SIGWEB Newsl.,
(Autumn):3:1–3:2.

BIBLIOGRAPHY 137

[Lacic et al., 2015a] Lacic, E., Kowald, D., Eberhard, L., Trattner, C., Parra, D.,
and Marinho, L. (2015a). Utilizing online social network and location-based data
to recommend products and categories in online marketplaces. In Mining, Mod-
eling, and Recommending ’Things’ in Social Media, pages 96–115. Springer.

[Lacic et al., 2017] Lacic, E., Kowald, D., and Lex, E. (2017). Tailoring recommen-
dations for a multi-domain environment. Workshop on Intelligent Recommender
Systems by Knowledge Transfer & Learning (RecSysKTL’2017) co-located with
the 11th ACM Conference on Recommender Systems (RecSys’2017).

[Lacic et al., 2018a] Lacic, E., Kowald, D., and Lex, E. (2018a). Neighborhood
troubles: On the value of user pre-filtering to speed up and enhance recommen-
dations. In International Workshop on Entity Retrieval (EYRE’18) co-located
with the 27th International Conference on Information and Knowledge Manage-
ment (CIKM’18).

[Lacic et al., 2014a] Lacic, E., Kowald, D., Parra, D., Kahr, M., and Trattner, C.
(2014a). Towards a scalable social recommender engine for online marketplaces:
The case of apache solr. In Proceedings of the Companion Publication of the 23rd
International Conference on World Wide Web Companion, WWW Companion
’14, pages 817–822. International World Wide Web Conferences Steering Com-
mittee.

[Lacic et al., 2018b] Lacic, E., Kowald, D., Reiter-Haas, M., Slawicek, V., and Lex,
E. (2018b). Beyond accuracy optimization: On the value of item embeddings
for student job recommendations. Proceedings of the International Workshop
on Multi-dimensional Information Fusion for User Modeling and Personaliza-
tion (IFUP’2018) co-located with the 11th ACM International Conference on Web
Search and Data Mining (WSDM’2018).

[Lacic et al., 2014b] Lacic, E., Kowald, D., Seitlinger, P., Trattner, C., and Parra,
D. (2014b). Recommending items in social tagging systems using tag and time
information. Proceedings of the 1st International Workshop on Social Personali-
sation co-located with the 25th ACM Conference on Hypertext and Social Media
(HT’14).

BIBLIOGRAPHY 138

[Lacic et al., 2019a] Lacic, E., Kowald, D., Theiler, D., Traub, M., Kuffer, L., Lind-
staedt, S., and Lex, E. (2019a). Evaluating tag recommendations for e-book anno-
tation using a semantic similarity metric. Proceedings of the REVEAL Workshop
co-located with ACM Conference on Recommender Systems (RecSys’2019).

[Lacic et al., 2014c] Lacic, E., Kowald, D., and Trattner, C. (2014c). Socrecm: A
scalable social recommender engine for online marketplaces. In Proceedings of the
25th ACM Conference on Hypertext and Social Media, HT ’14, pages 308–310.

[Lacic et al., 2015b] Lacic, E., Kowald, D., Traub, M., Luzhnica, G., Simon, J., and
Lex, E. (2015b). Tackling cold-start users in recommender systems with indoor
positioning systems. Proceedings of the 9th ACM Conference on Recommender
Systems (RecSys’15).

[Lacic et al., 2019b] Lacic, E., Reiter-Haas, M., Duricic, T., Slawicek, V., and Lex,
E. (2019b). Should we embed? a study on the online performance of utilizing
embeddings for real-time job recommendations. In Proceedings of the 13th ACM
Conference on Recommender Systems, pages 496–500.

[Lacic et al., 2020] Lacic, E., Reiter-Haas, M., Kowald, D., Dareddy, M. R., Cho, J.,
and Lex, E. (2020). Using autoencoders for session-based job recommendations.
User Modeling and User-Adapted Interaction, 30(4):617–658.

[Lacic et al., 2016] Lacic, E., Traub, M., Kowald, D., Kahr, M., and Lex, E. (2016).
Need help? recommending social care institutions. Workshop on Recommender
Systems and Big Data Analytics (RSBDA’2016) co-location with i-KNOW’2016.

[Lacic et al., 2015c] Lacic, E., Traub, M., Kowald, D., and Lex, E. (2015c). Scar:
Towards a real-time recommender framework following the microservices archi-
tecture. Workshop on Large Scale Recommender Systems (LSRS’2015) co-located
with the 9th ACM Conference on Recommender Systems (RecSys’2015), 15.

[Latifi et al., 2021] Latifi, S., Mauro, N., and Jannach, D. (2021). Session-aware rec-
ommendation: A surprising quest for the state-of-the-art. Information Sciences,
573:291–315.

[Lewis, 2021] Lewis, L. (2021). Infographic: What happens in
an internet minute 2020. AllAccess 25/04/2022. Available at:

BIBLIOGRAPHY 139

https://www.allaccess.com/merge/archive/32972/infographic-what-happens-
in-an-internet-minute.

[Li et al., 2017] Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., and Ma, J. (2017).
Neural attentive session-based recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, pages 1419–1428.
ACM.

[Liang et al., 2018] Liang, D., Krishnan, R. G., Hoffman, M. D., and Jebara, T.
(2018). Variational autoencoders for collaborative filtering. In Proceedings of the
2018 world wide web conference, pages 689–698.

[Liu et al., 2017a] Liu, D. C., Rogers, S., Shiau, R., Kislyuk, D., Ma, K. C., Zhong,
Z., Liu, J., and Jing, Y. (2017a). Related pins at pinterest: The evolution of a real-
world recommender system. In Proceedings of the 26th international conference
on world wide web companion, pages 583–592.

[Liu et al., 2017b] Liu, Q., Wu, S., and Wang, L. (2017b). Deepstyle: Learning user
preferences for visual recommendation. In Proceedings of the 40th international
acm sigir conference on research and development in information retrieval, pages
841–844.

[Loni et al., 2014] Loni, B., Shi, Y., Larson, M., and Hanjalic, A. (2014). Cross-
domain collaborative filtering with factorization machines. In ECIR’14, pages
656–661. Springer.

[Low et al., 2012] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and
Hellerstein, J. M. (2012). Distributed graphlab: A framework for machine learning
and data mining in the cloud. Proceedings of the VLDB Endowment, 5(8).

[Lu et al., 2020] Lu, F., Dumitrache, A., and Graus, D. (2020). Beyond optimizing
for clicks: Incorporating editorial values in news recommendation. In Proceedings
of the 28th ACM Conference on User Modeling, Adaptation and Personalization,
pages 145–153.

[Ludewig and Jannach, 2018] Ludewig, M. and Jannach, D. (2018). Evaluation of
session-based recommendation algorithms. User Modeling and User-Adapted In-
teraction, 28(4-5):331–390.

BIBLIOGRAPHY 140

[Ma et al., 2011] Ma, H., Zhou, D., Liu, C., Lyu, M. R., and King, I. (2011). Rec-
ommender systems with social regularization. In Proceedings of the Fourth ACM
International Conference on Web Search and Data Mining, WSDM ’11, pages
287–296. ACM.

[Maksai et al., 2015] Maksai, A., Garcin, F., and Faltings, B. (2015). Predicting
online performance of news recommender systems through richer evaluation met-
rics. In Proceedings of the 9th ACM Conference on Recommender Systems, pages
179–186.

[Matthes et al., 2020] Matthes, J., Karsay, K., Schmuck, D., and Stevic, A. (2020).
“too much to handle”: Impact of mobile social networking sites on information
overload, depressive symptoms, and well-being. Computers in Human Behavior,
105:106217.

[McInerney et al., 2021] McInerney, J., Elahi, E., Basilico, J., Raimond, Y., and
Jebara, T. (2021). Accordion: A trainable simulator for long-term interactive
systems. In Fifteenth ACM Conference on Recommender Systems, pages 102–
113.

[McNee et al., 2006] McNee, S. M., Riedl, J., and Konstan, J. A. (2006). Being
accurate is not enough: how accuracy metrics have hurt recommender systems. In
CHI’06 extended abstracts on Human factors in computing systems, pages 1097–
1101. ACM.

[Mnih and Salakhutdinov, 2008] Mnih, A. and Salakhutdinov, R. R. (2008). Prob-
abilistic matrix factorization. In Advances in neural information processing sys-
tems, pages 1257–1264.

[Muellner et al., 2021] Muellner, P., Kowald, D., and Lex, E. (2021). Robustness of
meta matrix factorization against strict privacy constraints. In European Confer-
ence on Information Retrieval, pages 107–119. Springer.

[Nilashi et al., 2016] Nilashi, M., Jannach, D., bin Ibrahim, O., Esfahani, M. D., and
Ahmadi, H. (2016). Recommendation quality, transparency, and website quality
for trust-building in recommendation agents. Electronic Commerce Research and
Applications, 19:70–84.

BIBLIOGRAPHY 141

[Ning and Karypis, 2011] Ning, X. and Karypis, G. (2011). Slim: Sparse linear
methods for top-n recommender systems. In 2011 IEEE 11th International Con-
ference on Data Mining, pages 497–506. IEEE.

[Parra and Sahebi, 2013] Parra, D. and Sahebi, S. (2013). Recommender systems
: Sources of knowledge and evaluation metrics. In Advanced Techniques in Web
Intelligence-2: Web User Browsing Behaviour and Preference Analysis, pages 149–
175. Springer-Verlag.

[Patro et al., 2020] Patro, G. K., Chakraborty, A., Banerjee, A., and Ganguly, N.
(2020). Towards safety and sustainability: Designing local recommendations for
post-pandemic world. In Fourteenth ACM Conference on Recommender Systems,
pages 358–367.

[Rana and Jain, 2015] Rana, C. and Jain, S. K. (2015). A study of the dynamic
features of recommender systems. Artificial Intelligence Review, 43(1):141–153.

[Reiter-Haas et al., 2017] Reiter-Haas, M., Slawicek, V., and Lacic, E. (2017). Studo
jobs: Enriching data with predicted job labels. Workshop on Recommender Sys-
tems and Social Network Analysis (RS-SNA’2017) co-located with i-KNOW’2017.

[Rendle et al., 2009] Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-
Thieme, L. (2009). Bpr: Bayesian personalized ranking from implicit feedback. In
Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence,
pages 452–461. AUAI Press.

[Rendle and Schmidt-Thieme, 2008] Rendle, S. and Schmidt-Thieme, L. (2008).
Online-updating regularized kernel matrix factorization models for large-scale rec-
ommender systems. In Proceedings of the 2008 ACM conference on Recommender
systems, pages 251–258.

[Resnick et al., 1994] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and
Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering of
netnews. In Proceedings of the 1994 ACM conference on Computer supported
cooperative work, pages 175–186. ACM.

[Roitero et al., 2020] Roitero, K., Carterette, B., Mehrotra, R., and Lalmas, M.
(2020). Leveraging behavioral heterogeneity across markets for cross-market train-

BIBLIOGRAPHY 142

ing of recommender systems. In Companion Proceedings of the Web Conference
2020, pages 694–702.

[Ronen et al., 2013] Ronen, R., Koenigstein, N., Ziklik, E., Sitruk, M., Yaari, R.,
and Haiby-Weiss, N. (2013). Sage: Recommender engine as a cloud service. In
Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13,
pages 475–476.

[Russom et al., 2011] Russom, P. et al. (2011). Big data analytics. TDWI best
practices report, fourth quarter, 19(4):1–34.

[Saberian and Basilico, 2021] Saberian, M. and Basilico, J. (2021). Recsysops: Best
practices for operating a large-scale recommender system. In Fifteenth ACM
Conference on Recommender Systems, pages 590–591.

[Saha et al., 2015] Saha, B., Shah, H., Seth, S., Vijayaraghavan, G., Murthy, A.,
and Curino, C. (2015). Apache tez: A unifying framework for modeling and
building data processing applications. In Proc. of SIGMOD ’15.

[Sahebi and Brusilovsky, 2015] Sahebi, S. and Brusilovsky, P. (2015). It takes two
to tango: An exploration of domain pairs for cross-domain collaborative filtering.
In Proceedings of the 9th ACM Conference on Recommender Systems, pages 131–
138.

[Sahebi and Walker, 2014] Sahebi, S. and Walker, T. (2014). Content-based cross-
domain recommendations using segmented models. In CBRecSys@ RecSys, pages
57–64.

[Said and Bellogín, 2014] Said, A. and Bellogín, A. (2014). Rival: a toolkit to foster
reproducibility in recommender system evaluation. In Proceedings of the 8th ACM
Conference on Recommender systems, pages 371–372.

[Saito and Joachims, 2021] Saito, Y. and Joachims, T. (2021). Counterfactual learn-
ing and evaluation for recommender systems: Foundations, implementations, and
recent advances. In Fifteenth ACM Conference on Recommender Systems, pages
828–830.

BIBLIOGRAPHY 143

[Salakhutdinov and Mnih, 2008] Salakhutdinov, R. and Mnih, A. (2008). Bayesian
probabilistic matrix factorization using markov chain monte carlo. In Proceedings
of the 25th International Conference on Machine Learning, ICML ’08, pages 880–
887. ACM.

[Sarwar et al., 2001] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001).
Item-based collaborative filtering recommendation algorithms. In Proceedings of
the 10th international conference on World Wide Web, pages 285–295. ACM.

[Sarwat et al., 2013] Sarwat, M., Avery, J., and Mokbel, M. F. (2013). Recdb in
action: Recommendation made easy in relational databases. Proc. VLDB Endow.,
6(12):1242–1245.

[Schafer et al., 2007] Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S.
(2007). The adaptive web. chapter Collaborative Filtering Recommender Sys-
tems, pages 291–324. Springer-Verlag.

[Shani and Gunawardana, 2011] Shani, G. and Gunawardana, A. (2011). Evaluat-
ing recommendation systems. In Ricci, F., Rokach, L., Shapira, B., and Kantor,
P. B., editors, Recommender Systems Handbook, pages 257–297. Springer US.

[Shani et al., 2005] Shani, G., Heckerman, D., and Brafman, R. I. (2005). An mdp-
based recommender system. Journal of Machine Learning Research, 6(Sep):1265–
1295.

[Shi et al., 2010] Shi, Y., Larson, M., and Hanjalic, A. (2010). List-wise learning
to rank with matrix factorization for collaborative filtering. In Proceedings of the
fourth ACM conference on Recommender systems, pages 269–272.

[Smirnova and Vasile, 2017] Smirnova, E. and Vasile, F. (2017). Contextual se-
quence modeling for recommendation with recurrent neural networks. In Pro-
ceedings of the 2nd workshop on deep learning for recommender systems.

[Smith and Linden, 2017] Smith, B. and Linden, G. (2017). Two decades of recom-
mender systems at amazon. com. Ieee internet computing, 21(3):12–18.

[Steck, 2013] Steck, H. (2013). Evaluation of recommendations: rating-prediction
and ranking. In Proceedings of the 7th ACM conference on Recommender systems,
pages 213–220.

BIBLIOGRAPHY 144

[Sun et al., 2019] Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., and Jiang,
P. (2019). Bert4rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management, pages 1441–1450.

[Trattner et al., 2014] Trattner, C., Parra, D., Eberhard, L., and Wen, X. (2014).
Who will trade with whom?: Predicting buyer-seller interactions in online trading
platforms through social networks. In Proc., WWW ’14, pages 387–388. ACM.

[Traub et al., 2015] Traub, M., Kowald, D., Lacic, E., Schoen, P., Supp, G., and
Lex, E. (2015). Smart booking without looking: Providing hotel recommenda-
tions in the triprebel portal. In i-Know 2015: 15th International Conference on
Knowledge Technologies and Data-driven Business.

[Truong et al., 2021] Truong, Q.-T., Salah, A., and Lauw, H. (2021). Multi-modal
recommender systems: Hands-on exploration. In Fifteenth ACM Conference on
Recommender Systems, pages 834–837.

[Twardowski, 2016] Twardowski, B. (2016). Modelling contextual information in
session-aware recommender systems with neural networks. In Proceedings of the
10th ACM Conference on Recommender Systems, pages 273–276. ACM.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008.

[Walunj and Sadafale, 2013] Walunj, S. G. and Sadafale, K. (2013). An online rec-
ommendation system for e-commerce based on apache mahout framework. In
Proceedings of the 2013 annual conference on Computers and people research,
pages 153–158. ACM.

[Wang et al., 2015] Wang, H., Wang, N., and Yeung, D.-Y. (2015). Collaborative
deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1235–
1244.

[Wu et al., 2016] Wu, Y., DuBois, C., Zheng, A. X., and Ester, M. (2016). Collabo-
rative denoising auto-encoders for top-n recommender systems. In Proceedings of

BIBLIOGRAPHY 145

the Ninth ACM International Conference on Web Search and Data Mining, pages
153–162. ACM.

[Yao et al., 2015] Yao, W., He, J., Wang, H., Zhang, Y., and Cao, J. (2015). Col-
laborative topic ranking: Leveraging item meta-data for sparsity reduction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 29.

[Zaharia et al., 2010] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
Stoica, I., et al. (2010). Spark: Cluster computing with working sets. HotCloud,
10(10-10):95.

[Zhang et al., 2019] Zhang, S., Tay, Y., Yao, L., Sun, A., and An, J. (2019). Next
item recommendation with self-attentive metric learning. In Thirty-Third AAAI
Conference on Artificial Intelligence, volume 9.

[Zhang and Pennacchiotti, 2013] Zhang, Y. and Pennacchiotti, M. (2013). Predict-
ing purchase behaviors from social media. In Proc., WWW ’13, pages 1521–1532.

[Zhang et al., 2012] Zhang, Y. C., Séaghdha, D. Ó., Quercia, D., and Jambor, T.
(2012). Auralist: introducing serendipity into music recommendation. In Proceed-
ings of the fifth ACM international conference on Web search and data mining,
pages 13–22. ACM.

[Zheng et al., 2016] Zheng, Y., Tang, B., Ding, W., and Zhou, H. (2016). A neural
autoregressive approach to collaborative filtering. In International Conference on
Machine Learning, pages 764–773. PMLR.

	Introduction
	Structure of this thesis
	Research Questions
	Scientific Contributions

	Related Work
	Recommender Algorithms
	Neural Recommenders
	Information Sources
	Scalable Recommender Systems
	Real-time Recommendations
	Evaluating Recommendations

	Publications
	Main Publications
	Additional Publications

	Conclusions and Outlook
	Results and Contribution
	Limitations
	Topics for Future Research

